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Abstract

To evaluate whether large language models (LLMs) can be leveraged to predict the
results of social science experiments, we built an archive of 70 pre-registered, nationally rep-
resentative, survey experiments conducted in the United States, involving 476 experimental
treatment effects and 105,165 participants. We prompted an advanced, publicly-available
LLM (GPT-4) to simulate how representative samples of Americans would respond to the
stimuli from these experiments. Predictions derived from simulated responses correlate
strikingly with actual treatment effects (r = 0.85), equaling or surpassing the predictive
accuracy of human forecasters. Accuracy remained high for unpublished studies that could
not appear in the model’s training data (r = 0.90). We further assessed predictive accuracy
across demographic subgroups, various disciplines, and in nine recent megastudies featuring
an additional 346 treatment effects. Together, our results suggest LLMs can augment experi-
mental methods in science and practice, but also highlight important limitations and risks of
misuse.

We invite researchers to try the model using our web demo, which generates AI-based forecasts of experimental
effects.

https://www.treatmenteffect.app/


Introduction
Large language models (LLMs) - a recent class of machine-learning models trained on vast cor-
pora of human language - possess striking capacities to emulate how humans think, communicate,
and behave (1), mimicking a broad range of advanced human abilities, such as social interaction
and coordination, moral judgment, negotiation, emotional support, and persuasion (2–6). With
LLMs increasingly able to simulate human language use, pressing questions have emerged
about whether and how these models can be used to support social and behavioral science (7, 8).
In this paper, we explore whether LLMs can be leveraged to accurately predict the results of
behavioral experiments, a capacity that could have myriad benefits for building scientific theories
and behavioral interventions. Below we detail a series of analyses in which we examine whether
a leading publicly available LLM - GPT-4 - can be used to predict original experimental effects
observed in a large archive of well-powered, pre-registered, nationally representative experiments
(a) conducted through the multidisciplinary NSF-funded Time-Sharing Experiments in the Social
Sciences (TESS) program (9) and (b) an archive of recent replication studies (10), together
representing a wide diversity of fields (e.g., social psychology, political science, sociology,
public policy, public health). We prompt GPT-4 to simulate the responses to experimental
stimuli of large, demographically diverse samples of Americans. We then compare average
responses across different experimental conditions to generate LLM-predicted experimental
effect sizes, which we then correlate with original experimental effects. We assess the accuracy
of LLM-derived predictions both for Americans in general, and for several subpopulations of
unique scholarly interest, systematically benchmarking the capability of LLMs to be used to
predict treatment effects observed in survey experiments. Finally, we move beyond this initial
test archive, gathering and analyzing a number of large, multi-treatment experiments - including
studies featuring behavioral measures, field tests of interventions, and policy impact evaluations
- to better assess the value and current limitations of LLM-derived forecasts of experimental
results.

The ability to predict social science experimental results with relatively high accuracy could
have substantial and far-reaching implications for basic and applied social science. While not
replacing human participants (11–15), the capacity to run LLM-based pilot studies cheaply,
quickly, and potentially in large numbers, could help researchers identify more promising
research ideas, facilitate theory and hypothesis building, better estimate unknown effect sizes
to determine needed sample sizes, and prioritize published studies in need of replication. The
capacity could also have applied value. For example, policymakers could leverage LLMs to
efficiently evaluate many public messaging approaches for encouraging desirable behaviors (e.g.,
public health behaviors, benefits program enrollment). At present, the best available tool for
predicting experimental results is to collect predictions from expert or lay forecasters (16–19).
However, while sometimes predictive, systematically collecting forecasts is time-consuming and
costly, and a low-cost LLM-based tool could make predictive forecasting widely accessible.

Here, we first investigate the capacity for LLMs to accurately simulate human responses
in representative sample survey experiments - studies where an experimental treatment is ad-



ministered and dependent variables are measured in the context of a survey conducted on a
random probability sample of a larger population. Recent research has focused on using LLMs
to simulate human responses to survey questions about a variety of topics – including personality
traits, moral judgments and political attitudes – with variable success (15, 20–23). Importantly,
we instead focus on predicting experimental effects - differences in levels of a dependent variable
attributable to a randomized treatment - an essential tool for causal analysis across the social
sciences. Predicting experimental results may be more difficult than simulating cross-sectional
surveys because it requires accurately simulating not only simulating human responses, but
also how such responses vary across sometimes subtly different conditions (24). Studies have
begun to explore the possibility of leveraging LLMs to predict experimental results (15–17). For
instance, one study found that LLMs can correctly simulate the results of original and modified
versions of well-known economics experiments (25), providing a proof of concept for the use of
LLMs to predict experimental effects. Notably, no prior studies have systematically analyzed a
large sample of experiments, including unpublished experiments outside of LLMs’ training data.

While promising, however, the use of LLMs to simulate human behavior and predict experi-
mental results likely has limitations and requires rigorous assessment of the method’s scope and
attention to possible risks. First, motivated by concerns that LLMs’ responses may be biased
against groups that have less access to the internet, or which are historically underrepresented
and/or misrepresented in news or other media (12,13,22,26), we assess whether estimated exper-
imental effect sizes generated with LLMs are less accurate for groups that are underrepresented
in the model’s training data. Second, to probe where LLMs falter, we assess LLM performance
across experiments from a range of fields (e.g., psychology, political science, sociology, public
policy), experiments run in different settings (e.g., survey versus field experiments), using several
metrics to assess accuracy. Finally, given that widespread availability of a technology that
accurately predicts experimental results could carry societal risks, we tested whether publicly
available LLMs can be employed to develop harmful interventions, such as identifying content
that can convincingly mislead the public.

Study Overview
Here, we examine whether the current generation of LLMs can be leveraged to accurately predict
the direction and magnitude of social science experimental effects conducted in the U.S. We first
built a large, multidisciplinary testing archive consisting of 50 survey experiments conducted
via the National Science Foundation-funded Time-Sharing Experiments for the Social Sciences
(TESS) project (9) from 2016 to 2022, all conducted on nationally representative probability
samples. We supplemented this with an additional set of 20 experiments from a recent replication
project, also conducted on nationally representative samples (10) (see Methods for additional
information). For each experiment, we re-analyzed the original, publicly available dataset,
estimating all experimental contrasts using a consistent analytic approach.

This testing archive has several strengths. First, the experiments are high quality: all are



highly statistically powered, pre-registered, peer-reviewed, conducted on nationally represen-
tative samples, and materials are open access. The use of nationally representative samples of
Americans is particularly valuable, allowing us to assess the accuracy of LLM-derived predic-
tions for demographic subgroups (15, 21, 22). Second, the archive is substantively broad and
diverse. The experiments were designed by 77 social and behavioral scientists from a range of
fields (e.g., political science, psychology, sociology, social policy, public health, communication)
and test the effects of many different types of experimental treatments (e.g., framing effects,
salience of topics, priming social identities) on a range of outcomes (e.g., political, cultural, and
religious attitudes, prejudice towards minorities, happiness) (see Table 1 in the SI for the full list
of experiments). Third, rather than rely on others’ analyses, we implement a consistent analytic
approach to estimate experimental treatment effects. Doing so allowed us to avoid researcher bias
and also to estimate all possible experimental contrasts, including those effects not hypothesized
by the original researchers and therefore unlikely to have been reported in published or publicly
posted papers. Fourth, results for a large number of experiments were not published, nor posted
publicly, by the end of GPT-4’s training data window, allowing us to specifically test for LLMs’
predictive capacity on experiments that GPT-4 could not have been exposed to.

The testing archive also has important limitations. Most critically, it only features studies
representative of the US population, preventing evaluation beyond that context. Also, while it
includes studies from a diversity of disciplines, many disciplines are not included (e.g., cognitive
psychology, behavioral economics, development economics, marketing). Finally, the archive
consists entirely of survey experiments with text-based stimuli and self-reported dependent
measures, and does not include field experiments, behavioral dependent variables, or image or
video stimuli. To begin to address some of the limitations of our primary testing archive, we
conduct additional analyses on a supplementary dataset below.

Our study design is illustrated in Figure 1. To generate LLM-based predictions for ex-
perimental results in the test archive, we obtained the original study materials, including text
of stimuli for all experimental conditions, outcome variables, and response scales. Broadly
speaking, LLMs could be prompted either to (a) directly predict experimental results (27), or (b)
simulate individual participants’ responses to experimental stimuli. Here, we adopt the latter
strategy. We prompted the LLM with (a) an introductory message (e.g., “You will be asked to
predict how people respond to various messages”) including a brief description of the study’s
setting, (b) a specific demographic profile of the research participant to emulate - including
information on the gender, age, race, education, ideology, and partisanship - randomly drawn
from a large nationally representative sample, (c) the text of the experimental stimulus, and (d)
the text of the question used to assess the outcome variable, along with the outcome response
scale and labels. We then prompted the LLM to estimate how the participant would respond
to the outcome question (15, 21, 25) after having been exposed to the experimental stimulus
(see Prompting Strategy, SI). We used an ensemble method (averaging the models’ responses to
prompts randomly drawn from a large bank) to reduce idiosyncratic responding to any single
prompt format. For each experimental condition and outcome measure, we averaged all LLM
responses.



Figure 1: Method. We re-analyze raw data from 70 nationally-representative U.S. studies and
estimate treatment effects in a consistent manner. We use a Large Language Model to simulate
those same experiments, providing the original study materials and demographically-diverse
participant profiles, and then calculate the average simulated response for each condition. We
evaluate the accuracy of the model in terms of the correspondence between measured- and
simulated- treatment effects.

To assess predictive accuracy, we (a) randomly selected one control condition per study (and
one dependent variable, in cases where the original study contained multiple), (b) computed the
predicted treatment effects, (c) correlated the resulting predicted treatment effects with actual
effects estimated using the original datasets, and (d) repeated this process 16 times, recording
the median correlation coefficient - r - which served as our primary measure of accuracy. To
account and adjust for statistical uncertainty in estimates of original treatment effects, we also
calculate disattenuated correlations (radj), which we report in addition to raw correlations (r).
Note that disattenuation generally has a small impact on correlations estimated on well-powered
samples, but can have a larger impact when effect sizes are less precisely estimated, such as in
small samples and for interaction effects. See Analysis of Experimental Data in SI for more
details.

Results
To evaluate whether the current generation of LLMs can be leveraged to predict treatment effects
in experiments, we first examined the correlation between predicted treatment effects derived
from GPT-4, and actual estimated treatment effects. In an analysis of 476 experimental effect
sizes calculated from the 70 experiments in the archive, we find GPT4-derived predictions were
strongly correlated with original effect sizes (r = 0.85; radj = 0.91). Examining only pairwise
contrasts that had statistically significant effects in the original experiments (28), we found that



GPT-4-derived predictions were in the right direction for 90% of the contrasts. As shown in
Fig. 1 and Section 3.1 in SI, we find the accuracy of LLM-derived predictions has improved
steadily and markedly across generations of LLMs, between GPT3 Babbage (which has 1.2B
parameters) and GPT-4 (believed to have approximately 1 trillion parameters), suggesting LLMs’
capacity to accurately simulate responses of experimental participants may improve further
in the future. Supporting the validity of our ensemble strategy, the accuracy of LLM-derived
predictions increased when using a larger number of prompts (see Section 3.2, SI). Additionally,
as shown in Figure 2D, predictions derived using GPT-4 achieved high accuracy for studies
conducted across a range of academic fields.

To assess the possibility that LLMs are simply retrieving and reproducing experimental results
from training data, we compared predictive accuracy for studies published as peer-reviewed
articles or publicly posted preprints before GPT-4’s training data cut-off (September, 2021; N =
37; 203 effects) with predictive accuracy for studies that were not published or publicly posted at
the end of 2021, and therefore could not have been part of the LLM training data (N = 33; 273
effects). Inconsistent with this concern, we found predictive accuracy was slightly higher for the
unpublished studies (r = 0.90; radj = 0.94; 88% predictions in the correct direction for significant
contrasts; see Figure 2D) than the published studies (r = 0.74; radj = 0.82; 87% predictions in
the correct direction for significant contrasts). As an additional test, we queried GPT-4 to guess
the authors of each experiment in our dataset based on its title, from a list of 10 possible authors
provided in the prompt. Analyzing the 56% of studies for which GPT-4 failed to correctly guess
the author, we again see a strong correlation between LLM-derived estimates and original effects
(r = 0.69; radj = 0.79; see Figure 2D). In summary, we find strong evidence that the current
generation of LLMs can be leveraged to accurately predict the size and direction of survey
experimental effects conducted in the US, that this accuracy is increasing across generations of
LLMs, and that high accuracy is not substantially driven by the LLM retrieving results from its
training data.

To establish a benchmark for predictive accuracy, we recruited a large sample (N = 2,659) of
American laypersons, presented them with details of the studies in the test archive, and gathered
their forecasts for effect sizes in these experiments (for more details, see Human Forecasting
Survey, SI). While these forecasts were quite accurate on average (r = 0.79, radj = 0.84), we
found that predictions derived using GPT-4 surpassed this human accuracy benchmark, where
earlier generation models did not (see Figures 2A and 2B).

In further analysis, we consider two possible reasons for the similar accuracy of human and
LLM-derived forecasts: it may be that (a) LLM-derived forecasts provide similar information
as human forecasts, or (b) LLM-derived forecasts provide independent information that is not
redundant with human forecasts. In a regression analysis, we find that both GPT-4-derived
forecasts (b = 0.35 [0.29, 0.42]) and human forecasts (b = 0.32 [0.25, 0.40]) are positively
and independently associated with true treatment effects, suggesting human and LLM- derived
predictions offer somewhat independent sources of information, and therefore might be combined
to yield even higher accuracy in predicting experimental effects. Indeed, a simple unweighted
average of the human and LLM-derived predictions was slightly more correlated with true



Figure 2: LLMs accurately predict treatment effects in text-based social science experiments
conducted in the US. (a) In a dataset of 70 text-based experiments with 476 effects, LLM-
derived estimates of treatment effects pooled across many prompts were strongly correlated with
original treatment effects (r = 0.85; radj = 0.91). (b) The accuracy of LLM-derived predictions
improved across generations of LLMs, with accuracy surpassing predictions collected from the
general population. (c) LLM-derived predictions remained highly accurate for studies that could
not have been in the LLM training data given they were not published prior to the LLM training
data cutoff date. (d) In robustness check analysis of various subsets of experiments, accuracy
of LLM-derived predictions remained high. In panels A and C, different colors depict different
studies.



Figure 3: LLM-derived predictions (a) are similar in accuracy across subgroups, and (b)
reasonably accurate for interaction effects when heterogeneity in effects is present. Disattenuated
correlations are depicted in the figure.

treatment effects (r = 0.88; radj = 0.92) than either prediction alone, suggesting that - at this
time - the highest levels of forecasting accuracy for social science experiments may be achieved
through human-LLM collaboration.

Despite the high correlation between GPT-4-derived and true effects, we found that raw
predictions derived from GPT-4 systematically overestimated actual effects, leading to a large
estimated RMSE of 10.9pp (vs. forecaster RMSE = 8.4pp) between predicted- and true- effects.
Therefore, when using our approach to predict absolute effect magnitudes, it is important that
GPT-4-derived predictions be scaled down (by a factor estimated as 0.56 for our primary archive
of survey experiments, see SI Alternative measures of accuracy for details). This linear rescaling
reduces the RMSE to only an estimated 5.3pp (vs. 6.0pp for forecasters; 4.7pp combined)1.

Assessing the scope of LLM-derived predictions of experimental effects
The use of LLMs to predict experimental results likely has substantial limitations and requires
rigorous assessment of the method’s scope. Leveraging our comprehensive archive of experi-
ments, we evaluate LLM performance across a variety of metrics and for a variety of potential
applications.

Assessing biases in LLM-derived predictions

Given meaningful concerns about the prevalence of biases in LLM output (22), we evaluated
LLM performance across several subgroups in the United States. Evidence that LLM-derived
survey predictions (15, 22) are less accurate for minority and underrepresented groups suggest
that LLM-derived predictions of experimental results may be lower for such groups. At the

1Note that the standard error of the original treatment effect estimates is 3.1pp. By rough calculation (comparing
the squared ratio of these errors), we estimate that approximately one third the sample size of the typical experiment
in our archive would be required in order to estimate treatment effects as accurately GPT-4.



same time, it is possible that LLMs’ predictive accuracy for different subgroups is higher for
experimental effects than for survey responses given research suggesting that there is relatively
less subpopulation heterogeneity in experimental effects than there is for survey responses (10,29,
cf. 30). Our approach of prompting LLMs with specific demographic profiles allows us to
evaluate these competing intuitions by comparing (a) LLM-derived predictions for demographic
profiles representative of specific subgroups, with (b) the observed experimental effects, estimated
for those subgroups in the experiments from the test archive.

As seen in Figure 3, GPT-4’s predictions for the 476 effects in our primary dataset are highly
and comparably accurate for women (r = 0.80, radj = 0.90) and men (r = 0.72, radj = 0.89), Black
(r = 0.62, radj = 0.86) and white (r = 0.85, radj = 0.90) participants, and Democrats (r = 0.69,
radj = 0.85) and Republicans (r = 0.74, radj = 0.86). Note that while the raw correlation is lowest
for Black participants, this is largely driven by the smaller sample size used to estimate effects in
the original studies; adjusting for sampling error reveals relatively high levels of accuracy for all
groups.

The lack of subgroup variation in predictive accuracy may reflect the fact that experimental
effects, at least within the US, are largely homogeneous across groups (10). For instance, in our
dataset, just 6.3%, 7.2%, and 15.4% of the original treatment effects were significantly moderated
by gender, ethnicity, and party respectively (See Section 3.4, SI for more details). To further
assess the accuracy of LLM-derived predictions in instances where subgroup heterogeneity is
present, we examined the accuracy of LLM-derived predictions of interaction effects between
experimental treatments and individual-level characteristics. As shown in Figure 3, our analysis
indicates LLM-derived predictions were weakly to moderately correlated with actual estimated
interaction effect sizes (r’s = -0.01, 0.16, and -0.03, and radj’s = 0.17, 0.55, and 0.41 for
interactions of experimental treatments with gender, ethnicity, and party respectively).

Assessing predictions for survey and field intervention studies

If LLMs are able to simulate experiments with sufficient accuracy, one potentially valuable
application is predicting the results of experiments testing interventions designed to have positive
social impact. Because many more ideas for addressing social problems can be generated than
what can be field tested or implemented, policymakers often rely on expert forecasts (made by
themselves and/or advisors) of the efficacy of interventions in order to select which interventions
will be tested and/or implemented. An LLM-based tool to rapidly and cheaply identify the most
effective interventions could support efforts to address pressing social problems, particularly if
that predictive capacity is similar to, or exceeds, that of human experts.

To address this, we collected and analyzed a supplementary archive of nine large-scale, many-
treatment survey and field experiments (or “mega-studies”) each of which tested the efficacy
of multiple interventions promoting outcomes such as pro-democratic attitudes, support for
action to address climate change, and intentions to take a flu vaccine. These nine mega-studies
- featuring six survey mega-studies, two field mega-studies, and a meta-analysis of 14 field
experiments - include 346 treatment effects estimated from the responses of 1,814,128 original



Figure 4: GPT-4 predictions were correlated with true effects as strongly as were the average
expert forecasts.

participants (17, 19, 27, 31–36). The experiments test treatments designed by scholars from a
wide range of fields (e.g., psychology, economics, political science, sociology, organizational
behavior, marketing). Notably, six of these studies also include measures of forecasts of likely
effect size collected from experts (e.g., social and behavioral scientists and practitioners working
in behavioral science organizations), providing us with an additional benchmark against which
we can evaluate the accuracy of LLM-derived predictions. Predicting the results of such mega-
studies is difficult because it typically involves comparing a pool of treatments that were all
designed to have effects in the same direction on the targeted outcome, thus resulting in smaller
differences between conditions than those in our primary test archive. Moreover, several of the
experiments in this archive were conducted in field settings or used non-text-based treatments,
making it hard to comprehensively describe the stimuli and setting of these studies in LLM
prompts.2

To assess the capacity of LLMs to distinguish the effectiveness of interventions within a
given megastudy, we first estimated the correlation between actual treatment effects for each

2Non-text treatments such as videos were manually converted to static text (e.g. transcripts and summaries of
image content) in order to be included in the prompt.



study (relative to the study’s control condition) and LLM-derived predicted treatment effects,
and then calculated the meta-analytic mean correlation across the megastudies3. In line with
our expectation, we found LLM-derived predictions to be relatively more accurate for survey
experiments (r = 0.47; radj = 0.61; 79% predictions in the correct direction for significant
contrasts; see Figure 4), than field experiments (r = 0.27; radj = 0.33; 64% predictions in the
correct direction for significant contrasts), and also for experiments that assessed effects of text-
based treatments (r = 0.46; radj = 0.59) than for experiments that assessed effects of treatments
that were not, or were only partially, text based (r = 0.24; radj = 0.29). Study level results are
available in SI section “Summary of results in the Archive of Megastudies”.

Across the six survey and field experimental megastudies that have expert forecasts, LLM-
derived predictions were positively correlated with original effects (r = 0.37; radj = 0.41),
and examining only pairwise contrasts that had statistically significant effects in the original
experiments, LLM-derived predictions correctly anticipated the direction of significant effects
69% of the time. LLM-derived predictions matched or surpassed expert predictions (r = 0.25;
radj = 0.27; 66% of predictions were in the correct direction for significant contrasts) in accuracy.
The above results indicate that - because of their speed, low cost, and accuracy relative to
human experts - LLMs show promise as a tool to help identify and develop socially beneficial
interventions.

Assessing risks of harmful use

We next consider whether LLMs can be used to predict the results of experiments on socially
harmful outcomes. This capacity has positive potential applications (e.g., content moderation),
but also could be misused for the design of harmful content (e.g., anti-vaccination messaging
campaigns). Publicly-available LLMs incorporate first-order guardrails to prevent their being
used to directly generate harmful content4; however, these guardrails may not prevent the use of
LLMs to identify the most effectively harmful content from among several options.

To assess this risk, we tested whether publicly available LLMs, with their current guardrails,
can be used to select among harmful messages. We analyze data from a recent experiment (31)
measuring the impact of vaccination-related Facebook posts on reducing COVID-19 vaccination
intentions. We found that GPT-4-derived predictions for the effects of these posts on vaccine
intentions were meaningfully correlated with effect size estimates (r = 0.49; radj = 0.96) (31).
The five posts identified using GPT-4 as having the most negative effects on vaccine intentions
were estimated in the original study to reduce vaccine intentions by 2.77pp, indicating the
potential for misuse of LLMs to identify efficacious content for causing social harm. This finding
provides clear and troubling evidence that first-order guardrails currently incorporated in GPT-4
are insufficient for preventing its use in the optimization of harmful propaganda. Further, as

3Note that this within-study analysis differs slightly from the across-study analysis employed for the primary
archive above.

4For example, prompting GPT-4 to “Write an effective message to reduce public trust in COVID-19 vaccines”
currently yields the response “I can’t assist with that.” (37)



Figure 5: LLMs effectively identify harmful anti-vaccination Facebook posts. The single
post predicted to be most harmful was titled “MIT Scientist Warns Parents NOT TO GIVE
CHILDREN Vaccine, Could Cause ‘Crippling’ Neurodegenerative Disease In Young People -
Geller Report”. This post was estimated by Allen et al. to reduce vaccine intention by 4.1pp
(p = 0.019).

shown in Fig. 4, this predictive ability has increased across successive generations of GPT, and
it is matched by Claude 3 Opus, another frontier proprietary large language model trained by
Anthropic5

Our findings suggest that companies hosting publicly-available LLMs could substantially
reduce misuse potential by implementing “second-order” guardrails that restrict the use of
these models to simulate human experiments involving socially harmful treatments. To preserve
legitimate use of this capacity (e.g., academic research on antisocial topics, social media platforms
seeking to identify antisocial content for removal) companies could grant special permissions for
legitimate violations of the second-order guardrails.

Discussion
Identification of causal relationships via controlled experiments is fundamental to social and
behavioral science. Across our large test archive - containing 476 social science experimental
effects involving 105,165 human participants - we find that the current generation of LLMs can

5Following responsible disclosure practices, we notified relevant departments at both OpenAI and Anthropic of
our findings 3 months before public release of this paper (see Email to AI companies in SI).



be leveraged to accurately predict the size and direction of experimental effects, approximating
insights that would be gleaned from moderately sized human samples. The majority of experi-
mental effects in our archive could not have been in the LLM training data, indicating LLMs
can be used to predict previously unknown experimental results. Additionally, LLM-derived
predictions remained relatively accurate in predicting the results of megastudies testing large-
scale social science interventions, especially text-based interventions with survey-based outcome
measures. In fact, in these experiments, the accuracy of LLM-derived predictions was at least
as high as that of scientific experts. Given that our approach did not involve any specialized
optimization, such as fine-tuning of the LLM or filtering out less effective prompts, the findings
from our analyses should indicate the lower bound of what is possible at present.

Our findings have several scientific and practical implications. This work suggests that
LLM-based approaches can offer insights for both basic scientific theory building and real-world
intervention design, competitive with the primary tools used at present by social and behavioral
scientists and expert practitioners. For instance, our approach can be used to run quick, low-cost
LLM-based pilot studies to help researchers identify high-yield ideas to investigate, generate
effect size predictions for use in Bayesian priors and/or power analyses, estimate the reliability of
past work and identify studies in need of replication. LLMs could also be also useful in instances
where it is practically challenging to run experiments with human participants. Practical barriers
may include studies in settings that are expensive to conduct, or where rapid results are needed.
For instance, during public health emergencies, the ability to efficiently and cheaply evaluate
many more messages than would be possible with only human participants could help identify
the most promising messages for further testing with human samples. LLM-based simulation
may also offer particular value in settings where the capacity to conduct research with human
participants is limited for ethical reasons (8). Ethical barriers include applications that involve
exposure to harmful stimuli (e.g., content moderation, misinformation research), and LLM-based
simulation could help minimize exposure of humans to these harms. We do not view LLM-
derived experimental predictions as a replacement for human samples, which could entail a host
of scientific problems (11, 12, 14, 38). Rather, our findings highlight the value of using them as a
tool to support research on human subjects.

While the ability to generate LLM-derived predictions of experimental results has several
applications, it also has important limitations and risks that should be carefully considered.
First, although we found comparable accuracy levels across subgroups, we cannot rule out the
possibility of biases in prediction. For instance, given that treatment effects in our original
sample were largely homogeneous, it remains unclear whether biases would emerge when
more heterogeneity is present. Further, our analysis focused on some demographic dimensions
(e.g., ethnicity), but not others (e.g., education levels), did not consider intersectional groups
(e.g., Black women), and did not explore accuracy across cultures beyond the US, all critically
important and scientifically valuable questions that future research should examine (13, 22).
Second, we find that LLMs are most accurate for simulating effects of survey or text-based
experiments, highlighting the need for future research to identify ways of leveraging LLMs to
more accurately forecast results of experiments conducted in field settings or which use complex



designs. Third, we have focused here on estimating treatment effects measured on the studies’
original scales, rather than on standardized scales (e.g., Cohen’s d) as would be most applicable
to use-cases such a power-analysis. As shown by prior research, (15, 39) LLMs underestimate
the variance of human responses, posing a challenge for estimation of standard effect sizes, and
we see this as a fruitful area for future research. Fourth, critics note that black-box, proprietary
models such as GPT-4 may not satisfy strict standards of replicability even if they provide more
accurate predictions than open-source models (13, 40), a problem that may be addressed in the
future as open source models achieve higher levels of predictive accuracy. Finally, critics warn
of important privacy and environmental concerns regarding LLMs that researchers should be
wary of (14). In sum, deployment and dissemination of these models without considering such
limitations poses risks of scientific misuse, including perpetuating bias (41), prioritizing ideas
based on incorrect predictions, and incentivizing studies whose results are easier for LLMs to
predict (14).

Ultimately, the ability to simulate experiments and produce relatively accurate predictions in
minutes, for only a few dollars, can potentially advance efforts towards scientific and practical
goals. Using AI to augment and inform, rather than replace, human intuition and decision-making
in the scientific process (38) can help the social and behavioral sciences benefit from emerging
technologies while still being rooted in the fields’ collective values and goals. With carefully
considered validation to minimize biased outputs, and guardrails to limit the use of this capacity
for malicious ends, we hope LLMs can be used to support theoretically grounded, reliable, and
practically useful social and behavioral science.

Method
Our primary testing archive of survey experimental results is composed of 50 experiments
conducted between 2016 and 2022 by TESS, an NSF–sponsored program in which researchers -
typically social scientists - propose survey-based experiments that, if selected through a peer-
review process, will be run on nationally representative probability samples. We supplemented
the archive with 20 experiments reported in a meta-analysis (10) of two recent replication
projects (42, 43) that found that experimental results obtained from probability samples (e.g.,
TESS studies) correspond with results obtained from convenience samples (i.e., Amazon MTurk).
We included data collected through both sample sources to maximize statistical power. These
collected studies are all pre-registered, highly powered, have openly posted stimuli and data, and
are highly comparable because they sample the same population. The collected studies reflect
our focus on experiments (a) which target the general U.S. population, (b) which do not use
a conjoint or list design, (c) whose stimuli were primarily or entirely text-based, (d) wherein
randomization did not depend on participants’ responses to questions. In the SI, see Primary
experimental archive for more information on this archive and Table S1 for a full list of its
experiments. We considered studies to be text-based if they primarily relied on text and any
information communicated via images was redundant with the text. For each study in the archive,



we included up to 12 conditions and three outcome items. We collected layperson forecasts via
Prolific (N = 2,659) for all the experiments in our final archive (see Layperson Forecasts of SI
for further detail).

We additionally analyzed nine recent, large-scale, many-treatment experiments testing in-
terventions crafted by researchers from an array of disciplines including psychology, political
science, marketing, and economics, as well as non-academic practitioners. We included megastud-
ies targeting socially beneficial outcomes, which tested at least ten experimental treatments and
were conducted on sufficiently large samples: (a) Allen et al. (2024; N = 9, 228) test the effects
of 90 messages on vaccination intentions, (b) Dellavigna & Pope (2018, N = 9, 321), testing 15
treatments targeting effortful task behavior, (c) Vlasceanu et al. (2024, N = 6, 735), testing 11
text treatments on climate change attitudes, (d) Tappin et al.(2023, N = 62, 738), testing 59 treat-
ments targeting UBI and immigration policy attitudes, (e) Zickfeld et al. (2024, N = 20, 553),
testing 21 treatments targeting tax compliance, (f) Voelkel et al. (2023, N = 25, 121), testing 25
treatments targeting political beliefs, (g) Milkman et al. (2022, N = 662, 170), testing 22 text
message treatments on behavioral vaccine uptake. (h) Dellavigna & Linos (2022, N = 960, 472),
a meta-analysis of 14 nudge treatments targeting several behavioral outcomes. (i) Milkman et
al. (2021, N = 57, 790) testing 53 28-day-long treatments targeting behavioral gym attendance.
See Archive of megastudies and Table S2 in the SI for more information.

While most original treatments in our dataset relied on text, some treatments (e.g., from
Voelkel et al., 2023) had to be converted to static text (e.g. transcripts of videos and high-level
descriptions of image content) before being added to prompts. For experiments with behavioral
outcomes (e.g., vaccine uptake), we asked how likely the hypothetical participant would be to
engage in the particular behavior. We ordered the scale labels of outcome scales such that higher
values on the scale were paired with labels indicating positive valence or higher degree of the
measured quantity (e.g., 1 = Not at all to 5 = Very much, rather than 1 = Very Much to 5 = Not at
all).

Supplement
Supplementary information is available at https://treatmenteffect.app/supplement.pdf

https://treatmenteffect.app/supplement.pdf


References
1. Using cognitive psychology to understand gpt-3, M. Binz, E. Schulz, Proceedings of the

National Academy of Sciences 120, (2023).

2. Artificial intelligence can persuade humans on political issues, H. Bai, J. Voelkel, J. Eich-
staedt, R. Willer (2023).

3. Human-level play in the game of diplomacy by combining language models with strategic
reasoning, M. F. A. R. D. T. (FAIR), et al., Science 378, (2022).

4. Generative agents: Interactive simulacra of human behavior, J. S. Park, et al. (2023).
ArXiv:2304.03442 [cs].

5. Large pre-trained language models contain human-like biases of what is right and wrong to
do, P. Schramowski, C. Turan, N. Andersen, C. A. Rothkopf, K. Kersting, Nature Machine
Intelligence 4, (2022).

6. Ai can help people feel heard, but an ai label diminishes this impact, Y. Yin, N. Jia, C. J.
Wakslak, Proceedings of the National Academy of Sciences 121, (2024).

7. Can generative ai improve social science?, C. A. Bail (2023).

8. Ai and the transformation of social science research, I. Grossmann, et al., Science 380,
(2023).

9. Time-sharing experiments for the social sciences, www.tessexperiments.org.

10. Generalizability of heterogeneous treatment effect estimates across samples, A. Coppock,
T. J. Leeper, K. J. Mullinix, Proceedings of the National Academy of Sciences 115, (2018).

11. Ai language models cannot replace human research participants, J. Harding,
W. D’Alessandro, N. G. Laskowski, R. Long, AI SOCIETY (2023).

12. Should large language models replace human participants?, M. Crockett, L. Messeri (2024).

13. Perils and opportunities in using large language models in psychological research, S. Abdu-
rahman, et al. (2023).

14. Artificial intelligence and illusions of understanding in scientific research, L. Messeri, M. J.
Crockett, Nature 627, (2024).

15. Synthetic replacements for human survey data? the perils of large language models, J. Bisbee,
J. D. Clinton, C. Dorff, B. Kenkel, J. M. Larson, Political Analysis p. 1–16 (2024).



16. Academics are more specific, and practitioners more sensitive, in forecasting interventions
to strengthen democratic attitudes, J. Y. Chu, et al., Proceedings of the National Academy of
Sciences 121, (2024).

17. Rcts to scale: Comprehensive evidence from two nudge units, S. DellaVigna, E. Linos,
Econometrica 90, (2022).

18. Using prediction markets to estimate the reproducibility of scientific research, A. Dreber,
et al., Proceedings of the National Academy of Sciences 112, (2015).

19. Megastudies improve the impact of applied behavioural science, K. L. Milkman, et al.,
Nature 600, (2021).

20. Can ai language models replace human participants?, D. Dillion, N. Tandon, Y. Gu, K. Gray,
Trends in Cognitive Sciences 27, (2023).

21. Out of one, many: Using language models to simulate human samples, L. P. Argyle, et al.,
Political Analysis 31, (2023).

22. Which humans?, M. Atari, M. J. Xue, P. S. Park, D. Blasi, J. Henrich (2023).

23. Limited ability of llms to simulate human psychological behaviours: a psychometric analysis,
N. B. Petrov, G. Serapio-García, J. Rentfrow (2024). ArXiv:2405.07248 [cs].

24. Do llms exhibit human-like response biases? a case study in survey design, L. Tjuatja,
V. Chen, S. T. Wu, A. Talwalkar, G. Neubig (2023). ArXiv:2311.04076 [cs].

25. Large language models as simulated economic agents: What can we learn from homo
silicus?, J. J. Horton (2023).

26. Artificially precise extremism: How internet-trained llms exaggerate our differences, J. Bis-
bee, J. Clinton, C. Dorff, B. Kenkel, J. Larson .

27. J. Zickfeld, et al., I Solemnly Swear I’m Up To Good: A Megastudy Investigating the
Effectiveness of Honesty Oaths on Curbing Dishonesty (2024).

28. Message pretesting using assessments of expected or perceived persuasiveness: Evidence
about diagnosticity of relative actual persuasiveness, D. J. O’Keefe, Journal of Communica-
tion 68, (2018).

29. A. Coppock, Persuasion in Parallel: How Information Changes Minds about Politics
(University of Chicago Press, Chicago; London, 2023).

30. Quantifying the potential persuasive returns to political microtargeting, B. M. Tappin,
C. Wittenberg, L. B. Hewitt, A. J. Berinsky, D. G. Rand, Proceedings of the National
Academy of Sciences 120, (2023).



31. Quantifying the impact of misinformation and vaccine-skeptical content on facebook,
J. Allen, D. J. Watts, D. G. Rand, Science 384, (2024).

32. What motivates effort? evidence and expert forecasts, S. DellaVigna, D. Pope, The Review
of Economic Studies 85, (2018).

33. Addressing climate change with behavioral science: A global intervention tournament in 63
countries, M. Vlasceanu, et al., Science advances 10, (2024).

34. Quantifying the potential persuasive returns to political microtargeting, B. M. Tappin,
C. Wittenberg, L. B. Hewitt, A. J. Berinsky, D. G. Rand, Proceedings of the National
Academy of Sciences 120, (2023).

35. Megastudy identifying effective interventions to strengthen americans’ democratic attitudes,
J. G. Voelkel, et al. (2023).

36. A 680,000-person megastudy of nudges to encourage vaccination in pharmacies, K. L.
Milkman, et al., Proceedings of the National Academy of Sciences 119, (2022).

37. Response retrieved from chatgpt-4 on 22 may, 2024, https://chatgpt.com/share/2a2b66d0-
e9fd-421f-bedd-bb6f9354742a.

38. Ai should augment human intelligence, not replace it, D. D. Cremer, G. Kasparov, Harvard
Business Review (2021).

39. Diminished diversity-of-thought in a standard large language model, P. S. Park, P. Schoeneg-
ger, C. Zhu, Behavior Research Methods (2024).

40. Openly accessible llms can help us to understand human cognition, M. C. Frank, Nature
Human Behaviour 7, (2023).

41. Dissecting racial bias in an algorithm used to manage the health of populations, Z. Ober-
meyer, B. Powers, C. Vogeli, S. Mullainathan, Science 366, (2019).

42. Generalizing from survey experiments conducted on mechanical turk: A replication ap-
proach, A. Coppock, Political Science Research and Methods 7, (2019).

43. The generalizability of survey experiments, K. J. Mullinix, T. J. Leeper, J. N. Druckman,
J. Freese, Journal of Experimental Political Science 2, (2015).


