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The dynamics of neuronal systems are characterized by hallmark features such
as oscillations and synchrony. However, it has remained unclear whether these
characteristics are epiphenomena or are exploited for computation. Due to the
challenge of selectively interfering with oscillatory network dynamics in neuronal
systems, we simulated recurrent networks of damped harmonic oscillators in which
oscillatory activity is enforced in each node, a choice well supported by experimental
findings. When trained on standard pattern recognition tasks, these harmonic oscillator
recurrent networks (HORNs) outperformed nonoscillatory architectures with respect
to learning speed, noise tolerance, and parameter efficiency. HORNs also reproduced
a many characteristic features of neuronal systems, such as the cerebral cortex
and the hippocampus. In trained HORNs, stimulus-induced interference patterns
holistically represent the result of comparing sensory evidence with priors stored in
recurrent connection weights, and learning-induced weight changes are compatible
with Hebbian principles. Implementing additional features characteristic of natural
networks, such as heterogeneous oscillation frequencies, inhomogeneous conduction
delays, and network modularity, further enhanced HORN performance without
requiring additional parameters. Taken together, our model allows us to give plausible
a posteriori explanations for features of natural networks whose computational role has
remained elusive. We conclude that neuronal systems are likely to exploit the unique
dynamics of recurrent oscillator networks whose computational superiority critically
depends on the oscillatory patterning of their nodal dynamics. Implementing the
proposed computational principles in analog hardware is expected to enable the design
of highly energy-efficient and self-adapting devices that could ideally complement
existing digital technologies.
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Neuronal networks of the cerebral cortex and the hippocampus, and likely also those in
homologous structures of nonmammalian species are characterized by several canonical
anatomical and physiological features. Among those are recurrent connections between
network nodes within and between processing layers (1, 2), the propensity of nodes and
subnetworks to oscillate in different preferred frequency ranges (3, 4), heterogeneous
but tuned conduction delays (5, 6), and activity-dependent adjustment of the gain
of connections (7, 8) by Hebbian synaptic plasticity (9). Certain canonical circuit
motifs, such as recurrent inhibition and excitation, play a well-defined role in signal
processing. Examples are contrast enhancement, gain control, dynamic range expansion,
and competitive interactions. However, such microcircuits also tend to oscillate, and
when several such microcircuits interact, additional complex dynamical phenomena
emerge. In simultaneous recordings from multiple network nodes, these dynamics
manifest themselves as frequency-varying oscillations (10, 11), transient synchronization
or desynchronization of discharges (12), resonance (13), entrainment (14), phase
shifts (15), and traveling waves (16–18). Yet, the functional significance of many of these
dynamical phenomena has remained unclear. Although the role of oscillating neurons and
microcircuits in generating motor patterns is well established (19), it remains a matter of
discussion whether oscillations support computations in the context of cognitive processes
in the cerebral cortex and, if so, how (20–25). Moreover, determining whether these
dynamical phenomena serve a functional role for computations is notoriously difficult
in physiological experiments because strategies for identifying causal relationships based
on loss or gain of function interventions fall short in such complex and highly integrated
systems (26). Therefore, virtually all evidence for the functional role of oscillatory
dynamics has remained correlative in nature.

Significance

Neocortical circuits are
characterized by complex
oscillatory dynamics. Whether
these oscillations serve
computations or are an
epiphenomenon is still debated.
To answer this question, we
designed a computational model
of a recurrent network that allows
control of oscillatory dynamics
(harmonic oscillator recurrent
network, HORN). When operating
in an oscillatory regime, HORNs
outperform nonoscillatory
recurrent networks in terms of
learning speed, noise tolerance,
and parameter efficiency.
Moreover, they closely replicate
the dynamics of neuronal
systems, suggesting that
biological neural networks are
likely to also exploit the unique
properties offered by oscillatory
dynamics for computing. The
interference patterns provided by
wave-based responses allow for a
holistic representation and highly
parallel encoding of both spatial
and temporal relations among
stimulus features.
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To overcome this epistemic hurdle and isolate computational
principles, we performed in silico simulations of recurrent net-
works (RNNs) and trained them on standard pattern recognition
tasks (sequential and permuted MNIST digit recognition, spoken
digit recognition, and a Mackey-Glass time-series prediction
task), which allowed us to use task performance as a measure
of functional relevance. Inspired by physiological evidence (27),
we configured network nodes as damped harmonic oscillators
(DHOs), a quintessential model of oscillatory dynamics. In
the resulting harmonic oscillator recurrent networks (HORNs),
oscillatory nodal dynamics act as an inductive bias and permit the
comparison of networks in which nodal dynamics is nonoscil-
latory with various regimes of oscillatory dynamics by solely
adjusting the control parameters of the DHOs, leaving other
network parameters unchanged.

The enforcement of oscillatory activity in every node is
quintessential for our approach. Networks of nonoscillating
nodes such as leaky integrators tend to express oscillatory
dynamics on the network level. However, the exploitation of
the extended dynamical primitives enabled by oscillations such
as coding in phase space, (de)synchronization, and resonance,
among others, by gradient-based learning schemes is limited,
because learning-induced changes in the weight configuration
easily change or disrupt the emergent oscillations. In contrast,
configuring nodes as oscillators makes the extended dynamical
primitives stably available to learning algorithms such as back-
propagation through time (BPTT) and permits their exploitation
for computational purposes. Controlling the oscillatory proper-
ties of the nodes allowed us to quantify the effect of oscillations
on network performance.

We found that HORNs outperformed, sometimes by a large
margin, their nonoscillating counterparts composed of leaky in-
tegrators, with respect to parameter efficiency, task performance,
learning speed, and noise tolerance. This superiority was also
manifest in comparison with other nonoscillating RNNs that rely
on gated architectures [LSTM, GRU (28)], and is particularly
pronounced for small system sizes. The finding of increased
task performance is supported by previous works that also
observed an increase in the performance of recurrent oscillator
networks (29–32).

In-depth analyses of the dynamics of HORNs uncovered a
powerful computational principle that results from the unique
properties of coupled oscillator networks and that uses the
superposition and interference patterns of waves for stimulus
representation and processing. Without requiring fine-tuning of
the parameters for the different experiments, the dynamics of
HORNs shared numerous features with those observed in the
cerebral cortex, suggesting that natural networks also exploit
the uncovered computational principle. To further examine
this possibility, we implemented other characteristic features of
natural networks in HORNs and found that the inclusion of
these biologically inspired features typically resulted in further
improved task performance without increasing the number
of trainable variables. Because the simulations allowed us to
study the functional consequences of implementing known
properties of natural neuronal networks—in particular of the
cerebral cortex—our synthetic approach in addition provides
plausible a posteriori explanations for a number of phenomena
whose function has so far remained elusive or has given rise to
controversial discussions.

In contrast to earlier research in neuroscience and machine
learning, which focuses mainly on network dynamics and
biological realism (33–36) on the one hand, or task perfor-
mance (30, 32, 37, 38) on the other, this study combines

elements from both fields by simultaneously addressing the
mechanistic modeling of biological network characteristics and
their functional validation through benchmark tests.

Results

Oscillating Network Nodes. Choosing DHOs as the model of
nodal activity was motivated by several reasons. First, DHOs
represent the quintessential implementation of an oscillatory
process that allows easy control of its relaxation dynamics through
few, interpretable control parameters. Second, damped harmonic
oscillations generically result from excitatory–inhibitory interac-
tions or negative feedback subject to a damping force in neuronal
microcircuits (39, 40). Third, recent experimental evidence
showed that population activity in the visual cortex of macaques
is well modeled by driven, damped harmonic oscillators (27).
By manipulating the control parameters of the DHOs, we
could convert the nodes from oscillators to integrators without
interfering with other network properties, which allowed us to
compare oscillatory with nonoscillatory regimes. Importantly, a
DHO node in our networks should not necessarily be considered
as a single biological neuron, but rather as a unit representing
an abstract aggregate quantity of the activity of a microcircuit
composed of recurrently coupled populations of excitatory and
inhibitory neurons such as a (P)ING circuit or alternatively, also
a single neuron endowed with pacemaker currents (41–43). In
this sense, HORNs can be understood as a mesoscale model of a
cortical network (Fig. 1A).

In our model, each DHO node has one state variable x, the
oscillator’s time-varying amplitude, and three control parameters
that jointly determine its relaxation dynamics: the natural
frequency !, the damping coefficient  , and an excitability
coefficient � (SI Appendix, Fig. S6 and Materials and Methods).
These parameters can be thought of as the innate or long-term
adaptation of the node to the characteristics of the signals to be
processed (Receptive Fields). Despite their simplicity, DHO nodes
capture the essential dynamical characteristics of various neural
mass models in the oscillatory regime (39, 44, 45) (SI Appendix).
Thus, the oscillatory properties of the nodes implemented in our
simulations are both physiologically plausible and experimentally
confirmed (27).

Already, a single DHO node possesses computational capa-
bilities that are not accessible to nonoscillating nodes, such as
leaky integrators. DHOs convert any input signal into an oscil-
lation, even if the signal is nonoscillatory. Using an oscillatory
representation enables a node to encode information not only in
amplitude but also in phase, allowing the encoding of stimulus
sequence order in phase shifts, for example (SI Appendix, Fig. S6).
If inputs are oscillatory, which is the case for recurrent inputs from
other network nodes but also for some sensory inputs, additional
computational capacities can be leveraged. The parameter !
defines a frequency band in which the DHO node selects
and amplifies temporally modulated signals through resonance.
When integrated in a recurrent network, DHOs convert inputs
into wave patterns. These patterns manifest both as standing
waves at each network node (a representation not available to
nonoscillating architectures) and also propagate throughout the
whole network, allowing for interference with waves generated
both by internal and reverberating network dynamics, as well as
spatially and temporally segregated stimuli. Crucially, when input
signals exhibit distinct temporal patterns, the oscillatory behavior
of DHO nodes enables them to identify features via resonance,
rather than merely through integration over converging input
connections, a strategy commonly used in nonoscillating RNNs
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Fig. 1. The architecture of HORN models and their performance in the sMNIST pattern recognition task. (A) A HORN composed of DHO nodes as a mesoscale
model of brain activity. Each DHO node models the compound activity of a recurrently connected E-I population as damped oscillations controlled by the
parameters !,  , �. (B) Test accuracy on sMNIST for different RNN architectures with approximately 2,500 trainable parameters (tanh, leak, HORN 43 nodes, GRU
25 nodes, LSTM 22 nodes) as a function of training steps over 100 training epochs. Lines show mean accuracy over 10 network instances with random weight
initialization, shaded areas SD. Legend at the Top Left. Note the logarithmic scale in the number of training steps. (C) Maximum test accuracy after 100 training
epochs on sMNIST for different RNN architectures as a function of system size (number of nodes for approximately 104 training parameters: tanh, leak, HORN
94 nodes, GRU 54 nodes, LSTM 47 nodes). Networks and legend as in B. Note the high task performance of HORNs at very low node and parameter counts. (D)
Median test accuracies of HORNh networks over parameter configurations !,  , � from a grid search. Each matrix entry shows the median test accuracy (color
scale on the Right) for the marginalized remaining parameter. Parameter value pairs (!, ) resulting in critical damping (! = ) marked with a black frame.
Note the performance drop for damping values above the critical point where nodes become nonoscillating. (E) Maximum test accuracy of different RNN
architectures (104 trainable parameters) after training on noisy sMNIST for 100 epochs as a function of training noise level �2

train. Lines show mean accuracy
over 10 random networks, shaded areas show SD. Colors as in B and C. (F ) Test accuracy of different network architectures trained on noisy sMNIST with
�2

train = 1 (dashed vertical line) as a function of test stimulus noise level �2
test, calculated over n = 1,000 test stimuli. Colors as in E. Note the pronounced noise

resilience in HORNs.

and all feed-forward architectures (46). In HORNs, single nodes
or assemblies of nodes can further encode information in distinct
frequency bands and gate the flow of information as a function of
relations among frequencies (Fig. 2E). These features of DHOs
endow HORNs with the properties of an anisotropically coupled,
nonlinear, analog medium for information processing that can
exploit for its computations wave-based representations of stimuli
and their interference patterns. This results in a rich and high-
dimensional coding space.

The interaction of the input nonlinearity with biologically
inspired feedback connections added to the DHO nodes gives
them a dynamical repertoire beyond that of a classical damped
harmonic oscillator (SI Appendix). For example, feedback allows
DHO nodes to express self-sustained oscillations and to resonate
at fractional harmonics of their natural frequency (SI Appendix,
Figs. S7–S9).

While modeling neural population activity on a mesoscale
with DHO nodes allows us to uncover the generic principles
described in this work, it also limits the model’s ability to capture
other dynamical phenomena observed in neuronal systems, such
as dynamical variations in oscillation frequency, spikes and
their bursting behavior, and, more generally, any dynamics
that are nonoscillatory or cannot be captured at the population
level (44).

Configuration and Training of the Networks. We first consider
homogeneous HORNh networks with identical parameter values
!,  , � for all nodes. As cortical circuits operate in a balanced
state (47), emphasizing the significance of fluctuations, we
couple DHO nodes on their velocity term ẋ (Materials and
Methods). Stimuli were presented to the networks in the form
of time series. Due to its standard nature and widespread use,

we chose the MNIST handwritten digit classification task as
our default benchmark, turning MNIST digits into sMNIST
time series (SI Appendix, Fig. S1A). This transformation converts
the geometrical properties of the stimuli into spectral patterns
that HORNs can exploit to perform stimulus classification. The
approach taken serves as a proxy for other spectral regularities
typical of natural signals. To increase task difficulty, we also
trained networks on permuted sequential MNIST (psMNIST)
stimuli in which a random but fixed permutation is applied to the
time series. This operation destroys local luminance correlations
in MNIST digits and results in time series stimuli with a
flat spectrum, making frequency-based information processing
harder (SI Appendix, Fig. S10).

We also study the case of geometrically organized inputs
(Geometric Input Drives Self-Organization) and have trained
HORN networks on more challenging datasets, such as a
spoken-digit classification task and a Mackey-Glass time series
prediction task (SI Appendix, Figs. S14 and S15). The results
confirm the computational superiority of the oscillatory dynamics
implemented in HORNs over nonoscillating architectures also
in those cases, particularly for the low-parameter regime.

For the sMNIST classification task, a grid search was per-
formed on the triplet of parameter values !,  , � to find a
set of DHO control parameter values that resulted in high
classification performance (Fig. 1D and SI Appendix, Fig. S1B
and Table S1). We found that networks with low values of the
damping factor  tended to perform best. Low damping factors
put the system in a highly oscillatory state and enhance the
memory spans of individual DHOs and the whole network (48).
The excitability parameter � had no strong effect on performance,
with intermediate values between 0.2 and 0.4 resulting in the best
performance.
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Fig. 2. Dynamics and computational principles in HORNs. (A) Network activity elicited by an sMNIST stimulus (digit 0) of 16-node HORNs trained on sMNIST,
before (top row) and after (bottom row) training. Left column HORNh

16, right column HORNn
16. Note the highly irregular temporal dynamics of HORNn

16 in the
trained state. (B) Pairwise cross-correlation coefficients of node activity for different input stimuli in HORNh

16 before (Left, Top row) and after training (Left, Bottom
row) on sMNIST for 10 epochs. Distribution of cross-correlation coefficients before (Right, Top) and after (Right, Bottom) training. (C) Pairwise phase locking
value (PLV) calculated on n = 100 test stimuli as a function of training steps for a HORNh

16 (blue) and HORNn
16 (orange) network trained on sMNIST. Lines show

mean; the shaded region indicates SD. (D) Dynamics of mean Kuramoto order parameter r of HORNh
16 activity trained on sMNIST in the untrained network

(Top) and after training for 10 epochs (Bottom). Lines show mean values per digit class. The HORN learns to generate dynamic, stimulus-specific patterns of
higher-order synchrony. (E) Intrinsic RFs (gain functions G) of nodes as a function of input frequency !i of 16-node HORNs before (Insets) and after training
on sMNIST. Homogeneous (Left) and heterogeneous (Right) HORN variants. Gain values G > 1 indicate amplification. Horizontal dashed lines indicate G = 1,
vertical dashed lines indicate the frequency !v = 2�/28 that corresponds to a straight vertical bar in pixel space. Colors indicate node identity. (F ) Accuracy
of stimulus decoding by linear SVMs trained on the activities of different HORN networks (93 nodes) that were stimulated with a sequence of two temporally
segregated stimuli S1 and S2 (shaded areas indicate stimulus timing). Light and dark colored curves indicate SVM decoder performance for S1 and S2 for a
homogeneous (HORNh) and nonhomogeneous (HORNn) network, respectively. Note the longer persistence and superposition of stimulus-specific information
in the HORNn. (G) Effective RFs of a HORNh

16 when mapped with contour stimuli from LSDSa (Top two panels) and sMNIST digits (Bottom two panels). Both
cases show the ERFs of the full network and the ERFs after the deletion (lesion) of the first node. Note the reconfiguration of most of the ERFs when a node is
inactivated.

The optimal values of the natural frequency parameter ! were
found to be around !v = 2�/28, which corresponds to the
fundamental frequency of an sMNIST time series resulting from
a straight vertical line in the 28 × 28 MNIST pixel space. As
DHOs resonate with input frequencies around !v, this choice
of ! enabled the nodes to extract and retain the information
in time series corresponding to continuous lines of different
slopes in pixel space. The value !v also coincides with a peak
in the variance of power spectral densities (PSDs) calculated on
a representative set of sMNIST samples (SI Appendix, Fig. S10).
Thus, by adjusting!, the network can be adapted to the statistical
regularities of the sMNIST stimuli and this setting of priors
enhances performance by allowing feature extraction through
resonance rather than solely through selective recombination
of convergent input connections. This strategy implemented
in HORNs is crucially dependent on the presence of nodes or
microcircuits with a propensity to oscillate.

Network Performance. Endowing network nodes with oscilla-
tory dynamics improved network performance compared to leaky
integrator or gated unit networks with respect to learning speed,
parameter efficiency, and noise tolerance (Fig. 1 and SI Appendix,
Figs. S11–S15). This superiority was particularly pronounced in
the region of low parameter counts (Fig. 1C ) and was critically
dependent on the configuration of the network nodes to be in a
highly oscillatory state (!�  , Fig. 1D). Performance was found
to drop for networks that were given low oscillation frequencies,
which act more like (leaky) integrators, and for damping values
above the critical value  > ! that abolish nodal oscillations.

This shows the functional benefit of oscillating nodal dynamics
in HORNs. When making the task more difficult by decreasing
signal-to-noise ratios or increasing the number and similarity of
stimulus patterns, the performance differences between HORNs
and the other networks tended to increase further (SI Appendix,
Figs. S11–S15).

In some cases, even a leaky integrator network performed
well when hyperparameter values were optimized (Fig. 1 B
and C ). This finding can be explained by the fact that both
HORNs and leaky integrator networks benefit from the residual
connections introduced by the discretization scheme of the
underlying ODE that introduces stable Lyapunov exponents and
stabilizes gradients (SI Appendix). Furthermore, the oscillating
dynamics of each DHO node temporally modulate gradients,
and this can result in an increase in the practical expressivity of
the networks [SI Appendix, Fig. S17 and (48)].

In contrast to the other architectures tested, HORNs were
highly noise-resistant and showed only a gradual decline in task
performance with increasing noise levels (Fig. 1E). Furthermore,
the stimulus representations in HORNs were robust to a
mismatch of noise characteristics between training and inference
runs (Fig. 1F ). The strong attenuation of high-frequency signals
can explain this robustness due to the nonlinear, frequency-
dependent gain modulation of input signals at each DHO node
(Receptive Fields). In particular, this noise tolerance persists even
when HORNs are trained on shuffled sequential psMNIST stim-
uli, in which the dominance of the low-frequency information
characteristic for the sMNIST stimuli is removed (SI Appendix,
Figs. S10 and S16). As both biological and artificial systems
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must learn from noisy stimuli and robustly detect, classify,
and process stimuli even under changing noise characteristics,
this noise resilience constitutes another attractive property of
HORNs.

To assess the influence of the presence of feedback parameters
v (amplitude feedback) and w (velocity feedback, diagonal terms
of the recurrent weight matrix) on network performance, we
trained HORNs with and without DHO feedback connections
on sMNIST and psMNIST and measured their task performance
(SI Appendix, Figs. S18 and S19). We found that even in the
absence of feedback in both amplitude and velocity (v = w = 0),
performance only decreased slightly, but both feedback terms
were needed to obtain the fastest learning speed and the highest
overall performance.

Before learning, the dynamics of homogeneous HORNh

networks is dominated by large-scale synchronization among
the nodes (Fig. 2 A and B). As learning progresses, global syn-
chronization decreases (Fig. 2C ), increasing the dimensionality
of network dynamics (SI Appendix, Fig. S2A). This reduction
in global synchronization is accompanied by the emergence of
complex, spatiotemporally structured correlations and higher-
order synchronization patterns that are stimulus-specific (as
assessed via the Kuramoto order parameter that is able to capture
higher-order synchronization phenomena; see Fig. 2D), well
segregated in the high-dimensional activity landscape of the
network, and classifiable by a linear read-out (Fig. 2 A, B, and D
and SI Appendix, Fig. S2 B and C ).

Heterogeneous Networks. The structural and functional or-
ganization of mature cortical networks is characterized by
heterogeneity (49, 50). Although several recent studies found
that this variability can benefit learning and computations (51–
53), it is still debated to what extent natural heterogeneity
is functionally relevant. To test whether increasing network
heterogeneity facilitates learning in HORNs, we simulated
nonhomogeneous HORNn networks in which each node had a
different natural frequency, damping coefficient, and excitability
(Materials and Methods). As expected, heterogeneous HORNs
responded already in the untrained state with patterns that
were more complex and less globally synchronized (Fig. 2A).
As in the homogeneous case, global synchrony decreased further
as learning progressed (Fig. 2C ). Here again, the decrease in
global synchrony led to an increase in the dimensionality of the
dynamics (SI Appendix, Fig. S2A), although the dimensionality
of the dynamics was higher compared to their homogeneous
counterparts already before training.

A comparison between homogeneous and heterogeneous
HORNs revealed superior performance of the latter with respect
to learning speed in datasets with more complex spectral
structures such as psMNIST (SI Appendix, Fig. S12). For such
datasets, heterogeneous HORNs performed better than their
parameter-optimized homogeneous counterparts. In addition,
noise tolerance was enhanced (Fig. 1F and SI Appendix, Fig. S12).
Note that in the case of sMNIST digits that have a reduced
complexity of their signal statistics, the final performance of
heterogeneous HORNs was found to be on par with that obtained
by homogeneous HORNs whose parameters had been optimized
for specific stimuli (Fig. 1 B and C and SI Appendix Fig. S11).
Thus, heterogeneity allows one to obtain networks with high
task performance without the need to find optimal parameter
configurations, saving computationally expensive resources. The
higher task performance of heterogeneous over homogeneous
networks results from the fact that heterogeneity introduces a

multitude of timescales into network dynamics that can be used
to process and represent stimuli (48).

Furthermore, heterogeneity brings network dynamics closer to
criticality (48, 51, 53, 54). Network dynamics close to the critical
point are characterized by scale invariance and divergence of
spatial and temporal correlation lengths, leading to an increased
dynamic repertoire and longer memory timescales, providing
computational advantages for reservoirs that encode information
in transient states (54). As HORNs also encode information in
transients, the long-lived transient states enabled by dynamics
close to criticality increase their computational power and allow
them to best meet the trade-off between efficiency and stability
of learning (48).

The advantages of heterogeneity were found to be especially
prominent for larger networks, more difficult classification
problems, and higher levels of stimulus noise (SI Appendix,
Figs. S11–S15). Because heterogeneous HORNs produced
highly structured response landscapes already in the untrained
state, we hypothesized that they might also serve as efficient
reservoirs and confirmed that this is indeed the case (SI Appendix).
This finding has most recently also been confirmed in ref. 55.

Conduction Delays. Another source of variability in biological
neuronal networks is the scattered nature of conduction delays
between nodes (56). To test the influence of introducing coupling
delays on task performance, we started with a HORNh and
endowed all recurrent connections with uniformly distributed
variable coupling delays [1,dmax] (Materials and Methods). This
manipulation increased HORN performance in both maximal
classification accuracy and learning speed on psMNIST (Fig. 3A)
due to the phase shifts introduced by the delays. Increasing dmax,
which results in greater heterogeneity, was found to increase task
performance, and this gain of function increased with increasing
values of dmax. Thus, like for the preferred oscillation frequencies,
heterogeneity in conduction delays enables the generation of
more diverse spatiotemporally structured activity landscapes in
HORNs, thus increasing the dimensionality of the networks’
state space and their performance, particularly for datasets with
complex spectral properties.

Multilayer Networks. In the mammalian cerebral cortex, sensory
signals are processed in hierarchically organized cortical areas
that are reciprocally coupled (57). To investigate the potential
benefits of distributed multistage processing, we generated two-
layer HORNh

32,32 networks consisting of a lower layer (L1) and
an upper layer (L2), with each layer consisting of a HORNh

32,
and introduced sparse reciprocal connections between the layers
(Fig. 3B and Materials and Methods). The input signals were
presented to L1 as before, and the result was read out at the nodes
of L2. We performed a grid search on the interlayer feed-forward
and feed-back connection probabilities fF, fB, as well as the scaling
factors f!, f that controlled the scaling of the parameters !, 
of L2 with respect to L1. For each parameter configuration, we
trained a HORNh

32,32 and assessed the best task performance on
psMNIST during 10 training epochs (we chose psMNIST over
sMNIST due to the much richer spectral stimulus properties).
Note that for each fixed value of each parameter, a parameter
configuration usually exists that results in a highly performing
two-layer network (SI Appendix, Fig. S3).

Importantly, we found that many two-layer HORNs out-
performed a single-layer HORNh at a comparable number of
trainable parameters (SI Appendix, Fig. S3C ). In particular,
higher task performance resulted when both the preferred
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4690 learning steps
L1

L2
FF FB

readout

input

dĳ

A B
400 learning steps

Fig. 3. Biologically inspired extensions to HORN networks. (A) Performance of HORNs with connection delays. Maximum test accuracy on psMNIST after 400
training steps (Left) and after 4,690 training steps (Right), respectively, as a function of maximal synaptic delay dmax. For each network, connection delays were
sampled from a uniform distribution U([1, dmax]). A network with dmax = 1 corresponds to a regular HORN. Lines show mean performance over 10 randomly
initialized networks, shaded areas show SD. (B) Two-layer HORNh

32,32 performance as a function of the four parameters pFF , pFB (fraction of feed-forward and
feed-back connections present, Upper panels), f! , f (scaling factor of ! and  between the first layer and the second layer, Lower panels). Curves represent
median and maximal values of marginal distributions of the maximal accuracy on psMNIST attained during training for each value of the four parameters.
Colored symbols refer to five exemplary networks whose parameter constellations and learning curves are shown in SI Appendix Fig. S3. Note the drop in
performance when L1 and L2 have the same preferred oscillation frequency and that increasing connection sparsity does not result in a strong performance
drop (gray circle marked on axes lies outside of the accuracy range displayed).

oscillation frequency and the damping coefficient were lower
in the upper layer (Fig. 3 B, Bottom row). In this setting, the
dynamics of the faster lower layer L1 is partly opaque to the
slower upper layer L2 due to the stronger attenuation of high
frequencies in L2. However, activity in L2 is capable of entraining
the nodes in L1, potentially supporting processes such as feature
binding by contributing more global binding criteria available to
the upper layer, but not to the lower layer. Because the upper layer
nodes receive convergent input from the lower layer and operate
at a longer time scale, the upper layers can bind longer segments
of the stimulus time series. Interestingly, we found that a two-
layer network in which the separation of frequency bands across
layers breaks down fails to learn (SI Appendix, Fig. S3C , gray
curve). In this case, the computations in the different layers are
not sufficiently separated into frequency bands, and the cross-talk
between layers in the same frequency band hinders the networks
from solving the stimulus classification problem successfully.

Fading Memory and Evidence Accumulation. Electrophysiolog-
ical recordings of neurons in the visual cortex have shown that
population activity exhibits fading memory and is capable of
simultaneously representing classifiable information on the iden-
tity of successively presented stimuli, including their sequence
order (58). HORNs share this ability. Following the sequential
presentation of two different stimuli, a linear classifier can
decode the two stimuli from the same segment of reverberating
activity (Fig. 2F ). As heterogeneous HORNs possess more
diverse memory timescales than homogeneous networks, their
ability to represent simultaneously information about temporally
segregated stimuli is superior, yet another functional advantage
of network heterogeneity.

As in any RNN, the response patterns of HORNs evolve over
time due to network dynamics. To determine the time at which
the network converges to states of maximal stimulus specificity,
a linear SVM was trained on stimulus classification using activity
data from a trained homogeneous HORN at different time points
throughout the stimulus presentation period. We found that the
networks accumulate evidence, with their dynamics allowing

for progressively better decoding of stimulus identity as the
network approaches the read-out time on which it was trained
(SI Appendix, Figs. S2 B and C and S20).

Receptive Fields. To better understand the principles of com-
putation in HORNs and how stimulus-specific activity patterns
emerge during training, we investigated how learning changed
the response properties of both individual nodes and the entire
network. Each DHO node in a HORN has a gain curve G(!i)
that describes how the node modulates the amplitude of a
temporally modulated input signal as a function of the input
signal frequency!i (Fig. 2E and SI Appendix, Fig. S8). Note that
this holds both for external, stimulus-dependent signals if they
have a temporal structure and always for the oscillatory activity
conveyed by the intrinsic recurrent connections. The shape of G is
determined by the values of !,  , and the self-connectivity terms
v (amplitude feedback) and w (velocity feedback, diagonal terms
of the recurrent weight matrix). We call G the intrinsic receptive
field (IRF) of the node because it defines the frequency band
in which the node shows feature selectivity. During learning,
the adjustment of the self-connection weights v and w alters G
and therefore drives changes in the IRF of each node, allowing
the node to improve its selectivity for stimulus features useful for
performing a given task (Fig. 2E). In homogeneous HORNs, the
IRFs of all nodes only differ due to learning-induced changes in
the values of the feedback parameters v and w that vary between
nodes (Fig. 2 E, Left). For heterogeneous networks, the IRFs
of the untrained network already cover a larger portion of the
frequency space, with nodes tuned to a wider variety of features
in the frequency space (Fig. 2 E, Right). Note that the value of !
not only influences the IRF but also sets the frequency band in
which the node codes. This increases the diversity of frequency
bands available for processing in heterogeneous HORNs.

For comparison with neuronal systems, we mapped the
receptive fields (RFs) of the nodes in the same way as is common
practice in electrophysiological studies (59). We examined which
stimuli activate a node most strongly and address the so-defined
RF as effective RF (ERF). Like in neuronal systems (60, 61),
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the structure of ERFs varied greatly depending on the nature
of the test stimuli. The reason is that the responses depend not
only on the external input but also on the network’s recurrent
dynamics. We determined the ERFs of nodes in our models
with two canonical choices of mapping stimuli: i) simple line
segments of different orientations, as commonly used for RF
mapping in visual experiments (59) (SI Appendix, Fig. S22), and
ii) the sMNIST digits on which the networks were trained, as
an example of complex natural stimuli (61). To measure ERFs,
we simulated a heterogeneous HORNn

16 trained on sMNIST
and calculated for each node the mean stimulus that resulted
in maximal node activation (Materials and Methods). When
stimulated with simple line stimuli, we find simple orientation-
selective ERFs that closely resemble the RFs of neurons in the
primary visual cortex (Fig. 2G,Left column). When mapped with
complex stimuli, some nodes exhibited specificity for particular
features of the MNIST digits (Fig. 2 G, Right column). Other
nodes had ERFs that appeared to be unrelated to the stimuli
in the training set, and yet others were inhibited. To determine
the influence of the collective network dynamics on individual
ERFs, we silenced one node of the network. This resulted in an
immediate reconfiguration of the ERFs of the other nodes, which
was quite dramatic in some cases (Fig. 2G).

This indicates that after learning, ERFs are, to a large extent,
the result of dynamic interactions in the network. Thus, the ERFs
of HORN nodes undergo context-dependent dynamic modifi-
cations similar to those observed in natural systems (60, 62).
To quantitatively describe the ERFs of nodes in frequency
space, networks were stimulated with harmonic sine-wave inputs,
determining their frequency responses (SI Appendix, Fig. S23).
Although the nodes in untrained networks resonated best with
inputs near their natural frequencies, after training the nodes
developed complex and hard-to-predict resonance patterns,
confirming the strong influence of network interactions on ERFs.

Learning Priors. In mammalian primary sensory cortices, infor-
mation about the statistical regularities of the natural environ-
ment is stored in the architecture and distribution of synaptic

weights, incorporating Gestalt criteria for feature binding and
perceptual grouping (2).

To test how the installation of priors in HORNs influences
their learning and task performance, we first installed a set
of canonical priors by training a heterogeneous HORNn (93
nodes) to discriminate simple elongated contours of different
orientations placed at random locations in the MNIST pixel
matrix (SI Appendix, Fig. S22). Such canonical priors enabled
pretrained HORNs to create distinct MNIST representations,
classifiable with high specificity by just training the readout
layer (SI Appendix, Fig. S24). Allowing recurrent connections
to continue learning after installing priors further increased
learning speed (SI Appendix, Fig. S24). Prestructured HORNs
needed fewer training steps than those trained on sMNIST
directly to achieve similar performance, showing that known
statistical feature contingencies enhance learning efficiency.
Larger pretrained heterogeneous networks also needed fewer steps
for high performance (SI Appendix, Fig. S24). We predict that
large and heterogeneous pretrained HORNs could achieve few-
shot learning, akin to natural neuronal systems. Taken together,
these findings emphasize the beneficial effects that priors have for
the orthogonalization of object representations in artificial and
most likely also natural neuronal networks.

Hebbian Learning. We examined whether BPTT-based training
of HORNs aligns with Hebbian learning principles by analyzing
changes in weight distributions and response activity correlations
before and after training. Interestingly, the changes in synaptic
weights resulting from BPTT training matched Hebbian pre-
dictions (Fig. 4A and SI Appendix, Fig. S4A). BPTT apparently
capitalizes on stimulus-specific correlation structures of network
activity to enhance those connections that induce correlation
patterns characteristic of particular stimuli, fostering the develop-
ment of stimulus-specific patterns. Heterogeneous HORNs, with
their more diverse dynamics, naturally exploit these structures
from the beginning, while homogeneous HORNs must first
desynchronize to expand their state space and develop stimulus-
specific correlation structures (Fig. 2 A–C ).

A B
untrained 400 training steps

Fig. 4. Backpropagation learning in HORN networks results in Hebbian-like weight changes. (A) Scatter plots of connection weights Whh
ij and mean cross-

correlation coefficients CCij of node activities of a homogeneous HORNh (64 nodes) before training (Left) and after training on psMNIST for 500 training steps
(Right). CCij computed over 100 samples. Linear regression lines in red. Marginal distributions of Whh

ij and CCij are shown on the Right and Top, respectively.
Note the bimodal distribution of correlation coefficients with modes around −1, 1 in the untrained state and the more decorrelated network activity as a result
of learning. (B) Performance of a homogeneous HORNh (64 nodes) network as a function of training steps when instances of the same network are trained
with correlation-based Hebbian (suffix “Hebb+”) or anti-Hebbian (suffix “Hebb−”) learning rules compared to instances trained with BPTT (suffix “BPTT”) and
when Whh was fixed (suffix “reservoir”). The input and readout parameters are trained with BPTT for all instances. Curves show mean performance over 10
network instances with random weight initialization, shaded areas SD. Note the strong performance of the anti-Hebbian rule for this initially highly synchronized
network.

PNAS 2025 Vol. 122 No. 4 e2412830122 https://doi.org/10.1073/pnas.2412830122 7 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 2
17

.2
2.

14
0.

20
1 

on
 M

ay
 4

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
21

7.
22

.1
40

.2
01

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2412830122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2412830122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2412830122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2412830122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2412830122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2412830122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2412830122#supplementary-materials


A B C
natural shuffled

14 x 14 units
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ou
t

geometric input

Fig. 5. Self-organization in HORNs driven by geometric input. (A) Schematic of geometric MNIST input provided to an all-to-all connected homogeneous HORN
(196 nodes). Each DHO node receives input from its 2×2 pixel receptive field. Input weights are constant and fixed, recurrent and readout weights are trainable.
Readout nodes are connected to the entire HORN. (B) Example network dynamics of a HORNh (196 nodes) stimulated as in A after training with BPTT for 2,000
steps (achieved classification accuracy around 90% for both natural and shuffled stimuli). Input is flashed to the network during one time step at t = 1. Readout
is performed after 150 time steps of network activity during which no input is given. Curves represent the activity of all nodes in the network (node identity is
color-coded). Note the increasing amplitudes of reverberating activity and the drifts in phase of the oscillatory responses. (C) Distance-dependent connection
weights of excitatory (red) and inhibitory (green) connections in HORNh networks after training with BPTT for 2,000 steps on geometric stimuli. Stimuli were
either natural (Left) or shuffled (Right) MNIST digits. Note the Mexican-hat-like connectivity structure among nodes in networks trained on natural stimuli and
the lack of structure in the connectivity in networks trained with shuffled stimuli.

We examined replacing BPTT with correlation-based learning
rules, using unsupervised Hebbian and anti-Hebbian rules to
modify recurrent connection weights. Here, a HORN with fixed
recurrent weights and plastic input and readout connections
served as a baseline (the “reservoir” HORN, Fig. 4B). When
recurrent connections were modified by correlation-based learn-
ing rules but not BPTT, anti-Hebbian rules in homogeneous
networks surprisingly resulted in performance similar to BPTT
(Fig. 4B), promoting selective desynchronization and enabling
stimulus-specific correlations. In heterogeneous networks, con-
ventional Hebbian rules improved performance above baseline
by enhancing existing correlations (SI Appendix, Fig. S4).

In nonoscillating networks, BPTT also led to Hebbian-
compatible weights, although less effectively than in HORNs.
HORNs quickly acquired stimulus-specific weights due to the
dynamics of coupled oscillators, which amplify and sustain
synchronous activity patterns suitable for Hebbian mechanisms.
BPTT benefits similarly, using resonance to orthogonalize
representations in high-dimensional state spaces.

Taken together, these results provide a proof of principle
that unsupervised Hebbian learning at the level of recurrent
connections in HORNs supports the segregation of stimulus-
specific dynamic states and thus facilitates their classification
(Fig. 4B and SI Appendix, Fig. S4B).

Geometric InputDrives Self-Organization and TravelingWaves.
To test how HORNs process spatiotemporally structured input
rather than just scalar time series, we trained networks that receive
spatially organized input (Fig. 5A). To this end, we activated each
node for one time step at an intensity corresponding to the sum
of the intensity values of the MNIST pixels within its RF. We
then gave the network 150 time steps to process the stimulus
before performing a linear read-out (Fig. 5B). For training, we
used the BPTT algorithm as before, started with an all-to-all
random connectivity, and kept the weights of the input layer
fixed, while the recurrent and readout weights were plastic. After
training for 10 epochs, the best classification accuracy on the test
set was found to be 90.21%.

When stimulated, each of the simultaneously activated nodes
responded with a damped oscillation (Fig. 5B). These activities
spread throughout the network and led to traveling waves and
complex interference patterns (Movies S1 and S2). The direction
and shape of the waves differed for responses evoked by different
stimuli. HORNs are able to sustain oscillatory activity in the
form of a standing wave in each DHO node. These waves,

once initiated, are sustained and give rise to global interference
patterns. In contrast, traveling waves in RNNs without oscillating
nodes interfere only when wave fronts collide.

In our model, nodes coactivated by a flashed stimulus
exhibit stimulus-locked synchronized oscillations. As the BPTT
algorithm mimics Hebbian plasticity in HORNs, this predicts
that during learning these synchronously active nodes should
increase their mutual coupling. Consequently, we observed a
shift from unspecific all-to-all connections to spatially restricted
connections with a distant-dependent decay of coupling strength,
following a Mexican hat-like shape (Fig. 5 C, Left).

This connectivity captures the essential structural feature of
the MNIST stimuli, the continuity of their contours, and the
spatial vicinity of activated nodes. During testing (recall) of the
trained model, a particular stimulus again induces synchronized
oscillations in a respective constellation of nodes, and, due to the
enhanced coupling of those nodes in the trained network, these
now engage in resonance which leads to an increase in response
amplitude.

As expected, such distant dependent connectivity patterns did
not emerge when training HORNs on shuffled MNIST stimuli
(Fig. 5 C, Right), although the networks achieved a comparable
classification accuracy of 90.48% on the test set. In the latter case,
other priors than spatial continuity and vicinity were installed
in the architecture of the coupling connections, namely those
representing the statistical contingencies of the shuffled MNIST
digits without local spatial structure.

Spontaneous and Evoked Activity. Cortical networks are spon-
taneously active, and stimulation typically leads to a reduc-
tion in variability and the emergence of stimulus-specific sub-
states (63, 64). In spontaneously active HORNs (SI Appendix),
spontaneous activity spans large, confined state spaces that
envelope stimulation-induced response spaces. In such networks,
dynamics rapidly and transiently converge to stimulus-specific
substates upon stimulation (SI Appendix, Fig. S5), reproducing
experimental phenomena (65).

Discussion

Controlled Oscillations. Implementing characteristics of the
mammalian cerebral cortex in RNNs revealed a powerful
computational principle based on oscillatory activity. Although
RNNs without oscillating nodes naturally produce oscillations,
such emergent oscillations are often transient and difficult to
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control, hindering their exploitation by gradient-based learning.
Enforcing oscillations at each node in HORNs allowed us to
study the functional relevance of oscillatory dynamics, identify
the computational principle responsible for the increased per-
formance of HORNs, and establish close relationships with the
dynamics of natural networks such as the cerebral cortex.

In HORNs, individual nodes turn any input into an oscilla-
tion, acquiring the ability to extract features through resonance
and, more generally, to modulate gain in a frequency-dependent
manner. Networks, in turn, generate holistic transient stimulus
representations characterized by wave interference patterns (37,
38, 66). Performance testing on standard pattern recognition
benchmarks revealed that a gradient-based learning scheme can
capitalize on this extended dynamical repertoire, leading to
substantially enhanced performance relative to RNNs without
oscillatory nodes. These findings of improved task performance
are in line with previous studies in the field of machine learning
that investigated RNNs with oscillating nodes (30, 37, 38) (while
HORNs have 50% less trainable parameters for the same number
of nodes).

Enforcing oscillatory activity in network nodes serves as an
inductive bias in RNNs, enhancing model expressivity (48).
This oscillatory bias has also been shown to improve task
performance in spiking networks by allowing subthreshold
membrane potentials to oscillate (67, 68). These findings suggest
a universal computational principle based on coupled oscillators,
enabling wave-based representations applicable to both neuronal
populations, as well as single neurons (69).

When trained with geometrically organized stimuli, HORNs
developed local connectivity patterns. Such locally connected
oscillator RNNs (37, 38) can be interpreted as a discretization
of a neural field model with a specific connection kernel that
implements a damped wave equation (70, 71). In this sense,
local oscillations and global waves are two sides of the same coin,
and the dynamics of HORNs and field models are equivalent
under certain conditions, a topic left for future study.

Reasons for Increased Performance. The good performance of
HORNs is due to several reasons, and these are closely related to
the propensity of network nodes to engage in oscillations.

First, innate preferences for stimulus features (controlled by the
parameters !,  , �) allow individual nodes to efficiently extract
and encode stimulus features already in an untrained network
and contribute to the noise resilience of HORNs. If input signals
lack temporal structure, the oscillatory properties of the nodes
are still beneficial because they transform sustained inputs into
oscillatory responses. This transformation allows computations
in the common format of temporally modulated signals which
prevail in the communication among nodes; see also the fourth
point below.

Second, the discretization scheme used for the oscillator
differential equations introduces temporal residual connections
that stabilize gradients in BPTT learning, and the oscillating
dynamics can increase the practical expressivity of the networks
by modulating gradients [SI Appendix and (30, 48)].

Third, DHOs in a HORN network collectively process stimuli
in a fully distributed manner by converting sensory input into
waves. Initially, these are standing waves in each oscillator,
but then they spread and cause complex interference patterns
at the network level (16, 17), findings that are compatible
with physiological evidence (66). This representation provides a
coding space of massive dimensionality, and, most importantly,
permits the superposition of information about multiple spatially

and temporally segregated events. This allows HORNs to analyze
and encode simultaneously not only spatial but also temporal
relations between a large number of stimulus features and to
generate holistic representations of the correlation structure of
complex input constellations.

The Virtues of Heterogeneity. Heterogeneity improves the per-
formance of RNNs because it increases the dimensionality of the
state spaces of the networks.

Having oscillatory nodes allowed us to increase heterogeneity
by varying preferred oscillation frequencies, which increased task
performance. In addition to enhancing heterogeneity by varying
the preferred oscillation frequencies of the nodes, we induced
heterogeneous conduction delays to deliberately induce phase
shifts. This further increases the dimensionality of the networks’
coding space, which can be exploited for computation.

The advantages of heterogeneity are also documented by
simulations of two-layer networks. These networks showed
enhanced performance at the same number of parameters, in
particular when the higher layer operated at lower preferred
frequencies than the lower layer. This allows the multilayer
network to operate in different frequency bands and to perform
parallel analyses of input patterns at different temporal scales
in each layer. This finding was the result of a grid search for
optimal parameter settings in two-layer networks and shares
similarities with the organization of the cerebral cortex. Here,
too, oscillation frequencies decrease as one progresses from
lower to higher processing levels (11, 72). Slower oscillations at
higher levels can establish relations among temporally segregated
stimuli over longer time intervals, which could support chunking.
Interestingly, according to basic physics, waves with slower
frequencies tend to travel over longer spatial distances, in our
case over a larger number of network nodes. In the cerebral
cortex, higher areas integrate information from increasingly
diverse and spatially remote processing streams, as reflected by
their large, often polymodal, and multiselective receptive fields.
Assuming a wave-based representation (66), operating at lower
oscillation frequencies would allow these higher areas to integrate
information over larger temporal and spatial scales, favoring
holistic processing of information and multimodal binding.

Another advantage of heterogeneity is that it brings network
dynamics closer to criticality (48, 53, 73). Dynamics close
to criticality are a hallmark of cortical networks and provide
computational benefits summarized in the “critical brain” hy-
pothesis (74). These benefits are due to the emergence of long-
lived transient and metastable states (54). HORNs also encode
information in transients and therefore are capable of coding with
sequences of metastable states and ghost attractors (75) when in a
regime close to criticality. This distinguishes their dynamics from
that of attractor networks (76) for which critical slowing down
limits computational power near criticality (77). More studies are
needed to better understand these transient dynamics in HORNs
and to identify related activity in biological networks (75, 78).

In summary, we found that the implementation of phys-
iologically plausible heterogeneity typically increases perfor-
mance without increasing the number of trainable parameters.
Heterogeneity i) gives even untrained networks sensitivity to
diverse correlation structures, thereby accelerating learning; ii)
enhances the processing of novel or noisy stimuli with varying
spectra; iii) expands coding dimensions; iv) allows networks to
utilize computational benefits resulting from dynamics closer
to criticality, while v) at the same time reducing the need for
costly parameter tuning. The gain of function by heterogeneity
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was particularly pronounced in larger networks, suggesting that
one-shot learning, a hallmark of biological systems, is facilitated
in large, heterogeneous networks such as the cerebral cortex.
This lets us conclude that the apparent heterogeneity in natural
neuronal systems is likely not a reflection of nature’s imprecision
but rather an efficient solution to computational challenges.

Relations toNeurobiological Systems. HORNs reproduced sev-
eral characteristic features of the dynamics and organization of
natural neuronal systems, particularly the cerebral cortex and
probably also the hippocampus. In addition, the simulations
allowed us to assign concrete functions to features of natural
networks whose role in information processing is still a matter of
discussion.

Our simulations show that learning-dependent complex,
transient, and stimulus-specific synchronization patterns benefit
information processing and identify the oscillatory properties
of network nodes as an underlying mechanism. This supports
the hypothesis that oscillations and synchrony, also observable
in neuronal systems (79), are functionally relevant and not
epiphenomena.

Simulations with geometrically organized input patterns pro-
cessed by the visual system yielded results similar to those
obtained with time-series data that do not contain geometric
information. Thus, the identified computational principles can
handle spatial and temporal relations among input signals
similarly and represent computations in the same format.
This benefits computations in sensory cortices receiving both
temporally and spatially structured input and aiding cross-modal
and interareal communication. For spatially structured stimuli,
learning led to synaptic weight configurations that decay with
distance and capture the Gestalt criteria of continuity and
vicinity, a property also known from natural systems (2, 65).
In the visual cortex, the basic layout of recurrent connections
is genetically determined, but experience-dependent pruning of
these connections further enhances their selectivity through a
Hebbian mechanism (80).

Stimulation of locally connected HORNs led to traveling
waves that closely resemble those observed in natural neuronal
networks (16, 66). Traveling waves are also a hallmark of
oscillatory RNNs in which local connectivity was enforced
by design (37, 38). Wave-based representations allow for very
high-dimensional representations and manifold coding strate-
gies. Consequently, numerous hypotheses have been proposed
regarding the functional role of traveling waves (17, 69). In
a wave-based model of the motor cortex, the direction and
wavelength of traveling waves are used to structure commands
in a way that is easily decodable by the dendritic arbors of
neurons in the descending motor system (69). However, the exact
function of traveling waves in the sensory cortices is still not fully
understood.

Another similarity between the dynamics of HORNs and
the cerebral cortex is the temporal evolution of responses in
simulations with geometrically structured stimuli. The initial
transient responses were amplified by reverberation, increasing
the decodability of the dynamic state due to better segregation
of stimulus-specific principal components of the population
vector (65). This state can be seen as a highly parallelized
search for the best match between sensory evidence and learned
priors (2). Thus, one of the core functions of predictive
coding, the matching of sensory evidence with stored priors,
can be realized through self-organizing dynamic interactions in
oscillatory recurrent networks.

During learning, nodes activated by semantically related
features increase their mutual coupling, and during recall,
these nodes self-organize into a stimulus-specific assembly with
synchronized and jointly enhanced responses. This dynamic as-
sociation of nodes is also observed in the visual cortex for neurons
tuned to perceptually bound features (10, 65) and is at the core
of the binding by synchrony hypothesis (BBS) (20). HORNs,
by exploiting the resonance properties of coupled oscillators,
reproduce this important feature of natural cortical networks.
The dynamics of spontaneously active HORNs resemble those
of natural cortical networks in which stimulation decreases
variance (63) and temporarily aligns dynamics to stimulus-
specific substates. These substates exist within the subspace of
spontaneous activity and arise from comparisons of sensory
evidence and stored priors (2). Therefore, spontaneous activity
can be seen as a blend of fragments of learned stimulus-specific
representations.

In addition to reproducing many physiological phenomena,
additional physiological experiments can now be designed to
examine specific predictions derived from the present study.
These experiments will require massive parallel recordings of
neuronal activity both within and across cortical areas with high
spatial and temporal resolution to capture the spatiotemporal
dynamics of traveling waves and their resulting interference
patterns.

Concluding Remarks. Taken together, the present results not
only unveil the computational principles accessible to HORNs
and other oscillator networks but also allow for a functional
interpretation of numerous experimentally verified physiological
phenomena whose roles in information processing have been elu-
sive or have caused controversial discussions. Plausible functional
roles can now be assigned to i) the propensity of nodes to oscillate
and the resulting dynamical phenomena such as synchroniza-
tion, desynchronization, resonance, entrainment, and traveling
waves (12–15, 17), ii) the diversity of preferred oscillation
frequencies, their nonstationarity and context dependence (3, 4),
iii) the heterogeneity of the conduction velocities of the recurrent
connections (5, 6), iv) the decrease of oscillation frequencies
in higher areas of the cortical processing hierarchy (11, 72),
v) the Hebbian adaptivity of recurrent connections (7, 8), vi)
the emergence of context-dependent dynamic receptive fields by
network interactions (60, 61), and vii) the reduction of variance
in network dynamics during stimulus presentation (63).

The simulations also suggest a physiologically plausible sce-
nario for the rapid and parallel matching of sensory evidence
with stored priors through self-organized convergence of network
dynamics to classifiable, stimulus-specific, dynamic substates.
These substates consist of highly structured, high-dimensional
dynamical landscapes that unfold due to interference of wave
patterns in amplitude, frequency, and phase space. In essence,
the described networks perform highly parallelized analog com-
putations in high-dimensional state spaces that simultaneously
relate a large number of spatially and temporally structured
input variables, a capacity ideally suited to accomplish context-
dependent feature binding and scene segmentation. Conse-
quently, attempts are made to exploit the principle described
in this study in machine learning architectures designed to
perform scene segmentation (81). Moreover, the computational
strategy implemented by HORNs is also well suited to overcome
challenges requiring the simultaneous evaluation of multiple
nested relations as occurring, for example, in language com-
prehension. Interestingly, biological systems are at ease with
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solving the binding problem, with the segmentation of cluttered
scenes and with the analysis of complex time series (e.g., spoken
language), while these tasks are notoriously difficult for digital
computer architectures that typically rely on serial feedforward
processing.

We believe that nature solves such hard problems through
analog computations of the kind described in this study. We
predict that it will be possible to implement the computational
principle presented here in analog hardware that runs at room
temperature, is miniaturizable, and is highly energy efficient.
Combined with electrical elements mimicking Hebbian synapses,
such as memristors, this principle will likely enable the design of
self-adapting devices for machine learning applications that can
ideally complement existing digital technologies.

Materials and Methods
Network Models. The update equations for a HORN network of n units in
discrete time t result from the discretization of a second-order ODE describing a
driven damped harmonic oscillator (SI Appendix) and are given by

yt+1 = yt + � · tanh
(

1/
√
nIrec
t+1 + Iext

t+1

)
− 2 · yt − !2

· xt ,

xt+1 = xt + yt+1,

where vectors and matrices are indicated by boldface symbols, and !, , �
are the natural frequencies, damping factors and excitability factors of the
network nodes, respectively. Initial conditions are x0 = y0 = 0 unless stated
otherwise. Irec

t+1 = Whhyt + bhh + v · xt and Iext
t+1 = Wihst+1 + bih denote

the recurrent and external input to each node, respectively. Here, the diagonal
entries of Whh and v denote feedback parameters; see SI Appendix. Wih, bih,
and Whh, bhh denote the input and hidden weights and biases, respectively,
and Sext = (s1, . . . , sT ) the external input. HORN networks with conduction
delays were simulated by assigning to each connection a delay sampled from a
uniform distribution 1 ≤ dij ≤ dmax of time steps and defining the recurrent

input to each node as Irec
t+1 =

∑dmax
d=1 M

dWhhyt+1−d + bhh + v · xt , where

Md
∈ {0, 1}n×n, 1 ≤ d ≤ dmax are binary masks and the value of Md

ij = 1

iff the connection from node j to node i has a delay of d, and Md
ij = 0

otherwise, with yi = 0 for i < 0. Similarly, two-layer HORNs were simulated
as a HORN of n = n1 + n2 nodes, where the first n1 nodes represent layer
1, and the rest of the nodes layer 2. Different connectivity patterns between
layers were modeled by modifying the recurrent input using a binary mask as
for the networks with delays (SI Appendix). An Elman RNN (label “tanh”) was
implemented by the update equation xt+1 = tanh(Whhxt + bhh + Iext

t+1).
Similarly, a “leak” RNN consisting of leaky integrators was implemented by
the update equation xt+1 = xt +h

[
−axt + tanh(Whhxt + bhh + Iext

t+1)
]
,

where h is a microscopic time constant and a a leak parameter that controls
memory decay (SI Appendix, Table S1). For GRU and LSTM networks, the default
implementations in PyTorch 1.9 were used.

Datasets. The MNIST dataset of handwritten digits comprises 28×28 matrices
of intensity values scaled to [0, 1]. sMNIST samples are given by 784-length time
series representing MNIST digits in scanline order. For psMNIST, a fixed, random
permutation is applied to shuffle the pixel positions (SI Appendix, Figs. S10
and S16). For the noisy case, i.i.d., additive white Gaussian noise was added at
the pixel level, sampled from N(0, �2), with stimulus values clamped to [0, 1]
after application. The Line segments dataset (LSDS) comprises 28×28 pixel
samples with line segments at specific angles, defined by four parameters: the
number of angles na, maximum segments per sample ns, the minimum and
maximum segment lengths lmin and lmax, and whether line segment locations
are random (r) or centered (c); seeSI Appendix. We use LSDS(32,5,11,c) as LSDSa
and LSDS(10,3,8,24,r) as LSDSb (SI Appendix, Fig. S22). Further datasets are
described in SI Appendix.

Simulations. All networks were simulated using PyTorch (version 1.9) and
utilized an affine readout layer at the last time step for training all model
parameters with BPTT using a binary cross entropy loss for all classification
problems and an MSE loss for regression tasks. AdamW was used as an optimizer
andgradientclippingwasappliedtonon-HORNnetworkstoensureconvergence.
Optimal hyperparameter configurations were determined by a grid search for
each architecture and dataset (SI Appendix).

Synchronization Measures. The PLV of two time series of length T is
PLV(x1, x2) = 1

T |
∑T

t=1 e
iΔ�(t)

| ∈ [0, 1], where Δ�(t) = �1(t)− �2(t)
and �i(t) denotes the instantaneous phase of xi. The time-varying Kuramoto
order parameter r(t) is r(t) = | 1n

∑n
k=1 exp(i�k(t))| ∈ [0, 1], where�k(t)

is the instantaneous phase of node k.

Receptive Fields. For each DHO node, the intrinsic receptive field (IRF) was
calculated as the quotient between the DHO node amplitude, i.e., the stationary
forced oscillation, and the input amplitude, as a function of the input frequency
!i (gain curve) of the node using sinusoidal inputs using an amplitude of 1 over
a time of 50,000 time steps to allow transient dynamics to settle. The effective
receptive field (ERF) of DHO nodes was calculated as the mean most strongly
driving stimulus. For this, network activity was first recorded for 10,000 samples
in a test set, and then the average of the 500 stimuli that resulted in the highest
mean absolute amplitude over entire stimulus presentation period of a given
DHO node was calculated as the ERF.

Hebbian Learning. An additive rule was implemented that modifies the weight
of a synaptic connection Wij from node j to node i by an additive term ΔWij =

�Δ�haijr(xi(t), xj(t)), where �Δ ∈ {+1,−1} determines the type of the
learning rule (�Δ = +1: conventional Hebb+, �Δ = −1: anti-Hebb-), �h
denotes the learning rate, aij ∈ {0, 1} an activity modulator, and r(xi(t), xj(t))
denotes the Pearson correlation between the activity vectors of the nodes i and
j computed over the time steps t = c, . . . , T , respectively, where T denotes the
stimulus length; see SI Appendix.

Geometric Input. A homogeneous HORN was endowed with geometrically
organized nonoverlapping receptive fields (network units on a 14 × 14 grid
with each unit receiving input from the corresponding 2 × 2 pixel region
inside a 28 × 28 pixel MNIST digit). To simulate a flashed stimulus, the
network received input only during the first time step and input connection
strengths were kept constant (SI Appendix). The network was trained with
BPTT on the MNIST classification task for readout at time t = 150. For the
shuffled MNIST case, a random, but fixed permutation was applied to all MNIST
samples.

Data, Materials, and Software Availability. GitHub repository has been
deposited in https://github.com/exilef/horn (82).
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