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Abstract
The first part of the paper is devoted to a comparison between the functional architectures 
of the cerebral cortex and artificial intelligent systems. While the two systems share numer-
ous features, natural systems differ in at least four important aspects: i) the prevalence of 
recurrent connections, ii) the ability to use the temporal domain for computations, iii) the 
ability to perform "in memory" computations and iv) the prevalence of analog computa-
tions. The second part of the paper focuses on a simulation study that has been designed to 
answer the long-standing question of whether the oscillatory patterning of neuronal activ-
ity, which is a hallmark of natural systems, is an epiphenomenon of recurrent interactions 
or serves a functional role. To this end, recurrent neuronal networks were simulated to cap-
ture essential features of cortical networks, and their performance was tested on standard 
pattern recognition benchmark tests. In order to control the oscillatory regime of these net-
works, its nodes were configured as damped harmonic oscillators. By varying the damp-
ing factor, the nodes functioned either as leaky integrators or oscillators. It turned out that 
networks with oscillatory nodes substantially outperformed their non-oscillating counter-
parts. The reasons for this superior performance and similarities with natural neuronal net-
works are discussed. It is concluded that the oscillatory patterning of neuronal responses is 
functionally relevant because it allows the exploitation of the unique dynamics of coupled 
oscillators for analog computation.
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Changing Views on Brain Dynamics

Metaphors

Ever since anatomists and physiologists have set out to analyze the functions of organs, 
attempts have been made to come up with analogies referring to contemporary, man-
made artifacts: The heart a pump, the kidney a filter, and the liver a chemical plant. This 
also holds for the brain. However, finding plausible metaphors for the functions of the 
brain turned out to be less straightforward. The major problem is, of course, the notori-
ous mind-body problem. So far, there is no example of a material system other than the 
brain that is capable not only of interacting with the material dimension of the world 
but also of generating immaterial realities such as the qualia of conscious experience, 
emotions, and beliefs. Yet, here we do not intend to discuss the question of whether the 
emergence of these immaterial phenomena can be accommodated in the framework of 
naturalistic explanations. Readers motivated to further explore this question are invited 
to consult a recent paper that contains abundant references to studies dealing with these 
problems (Singer, 2019).

However, certain functions such as performing logical operations and calculus, medi-
ating sensory-motor reflexes, maintaining homeostasis, and programming complex 
motor responses turned out to be readily implementable in machines. Accordingly, the 
brain has been successively compared with ever more sophisticated technical devices. 
Nurtured by the monist manifesto of Julien Offray De La Mettrie, formulated in his book 
“L’homme machine" (1748), and by the behaviorist stance, which considered nervous 
systems as stimulus-response machines, the brain has been compared with mechanical 
calculators, hydro-pneumatic machines, electric circuits performing analog computa-
tions, cybernetic devices made up of interconnected black boxes accomplishing specific 
functions, and more recently digital computers performing complex logical operations, 
to name but a few. Influenced by the concepts of Gestalt psychology (Köhler, 1930) and 
theories on the dynamics of complex, self-organizing systems (Haken, 1977; Nicolis 
& Prigogine, 1977), a parallel line of more wholistic theories of brain dynamics was 
developed that emphasized analogies with complex dynamical systems (Breakspear, 
2017). The core constituents of these theories are phenomena such as oscillations, prop-
agating waves, interference, competition, and synergy. These phenomena are ubiquitous 
in organisms but also observed in inanimate systems. Examples are pattern-generating 
chemical diffusion-reaction systems or mechanical, optical, and electronic systems con-
sisting of reciprocally coupled elements. Physical systems thought to capture some of 
the neuronal dynamics and imitate the respective computations are holograms, or more 
generally, any medium supporting propagation and interference of waves (Maksymov 
et al., 2022). The principle of holography uses the interference of waves, in this case, 
light waves, to encode information in a holistic, distributed manner. The interference 
pattern resulting from the encoding of a visual scene can be engraved in an optical 
medium, e.g., a glass plate. Upon illumination of any part of his plate with coherent 
light, the visual scene can then be reconstructed. Lately, even quantum systems are used 
as metaphors for brains as they share the brain’s abilities to solve hard optimization 
problems, such as the Traveling Salesman Problem and visual scene segmentation in a 
seemingly effortless way. In this case, the common denominator is that basic operations 
can be captured with the very general and powerful mathematical formulation of wave 
functions.
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Artificial Systems

As this brief recapitulation of metaphors for the brain suggests, we are currently dealing 
with widely divergent classes of models, all of which capture some aspects of brain func-
tion. This makes it difficult to determine which concept fits best with our current knowl-
edge of the structural and functional organization of natural brains.

At first sight, the answer seems straightforward. In the past two decades, progress in 
the design of computing algorithms, implementation of machine learning algorithms, and 
a tremendous increase in computing power have led to systems that outperform human 
brains in a number of functions that had been considered accomplishable only by highly 
evolved brains. We have already become used to the fact that mechanical and chemical 
sensors, electronic calculators, data mining systems, and autopilots outperform our cogni-
tive abilities in some areas. However, realizing that there are now machines that excel in 
tasks that we consider as requiring reasoning, decision-making, educated judgments, and 
understanding of meaning is experienced as an attack on our human dignity. Generative 
large language models seemingly pass the Turing test and experienced doctors rely more 
and more on the diagnostic abilities of trained supercomputers. Are these systems then an 
appropriate model for our brains? Have we understood how our brains function, bypass-
ing neurobiological investigations, by creating and, therefore, understanding systems that 
accomplish genuine brain functions? A number of arguments suggest that this might be 
the case. The architecture of the deep feed-forward neuronal networks (DNNs), which are 
currently mostly implemented on digital von Neumann architectures, shares features with 
natural neuronal networks. In fact, they are, in most cases, based on the perceptron model 
proposed in the fiftieth of the last century by Frank Rosenblatt (1958). This model was 
inspired by the seminal works of McCulloch and Pitts (1943) and Donald Hebb (1949), 
and aimed at capturing some of the wiring principles of natural neuronal networks (Fig. 1).
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Fig. 1  Perceptron and feed-forward architectures of artificial neuronal networks. A. Schematic of the Per-
ceptron architecture in which each node computes the weighted sum of its inputs, followed by the applica-
tion of a non-linearity f. B. Schematic of a feed-forward network with an input layer, two hidden layers, 
and an output layer. Each circle indicates a Perceptron node as in A. Nodes code for features by means of 
convergent weight configurations (labelled line code)
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In such architectures, the nodes of the network are capable of integrating converging 
input signals and converting them into a single output according to a pre-specified function 
and thus share rudimentary properties with neurons. Input signals are relayed in a serial 
way through feedforward connections via so-called hidden layers to an output layer. The 
feed-forward connections are convergent and distribute the signals of individual units of 
one layer onto nodes in the next layer, each node integrating signals from a large number 
of weighted inputs. Thus, inputs are transformed into distributed activation patterns in the 
hidden layers. By adjusting the weights of the feedforward connections, it becomes possi-
ble to improve the segregation of activation patterns in the hidden layer and ultimately ena-
ble the classification of these patterns with linear classifier units. It suffices to adjust inputs 
from the hidden layer nodes to the output layer so that a particular pattern in the hidden 
layer activates a corresponding unit in the output layer (the so-called read-out layer) pref-
erentially. Even the latest deep learning architectures, such as convolutional or transformer 
networks, are constructed according to this principle. Temporal dynamics are avoided by 
design in order to facilitate highly parallelizable training.

It is worth mentioning that the main drivers of progress in the last decades have been 
technological rather than conceptual advances, such as the ever-growing availability and 
affordability of computational resources, in particular of GPUs allowing for highly parallel 
processing. These advances enabled the construction and training of larger and larger mod-
els on larger and larger data sets. Transformer networks, for example, were motivated by 
their ability to capture certain aspects of recurrent dynamics but still rely on feed-forward 
architectures that are easier to control. All these networks are trained with a method that is 
known as back-propagation of errors (or back-propagation, for short) (Linnainmaa, 1970; 
Werbos, 1982). Next to the increase in computing power, it was the refinement of this train-
ing algorithm that contributed essentially to the excellent performance of these networks.

In contrast to feed-forward architectures, training recurrent artificial networks on tem-
porally organized inputs with the back-propagation algorithm has remained a challenge 
(Pascanu et al., 2013), despite important developments such as the introduction of gated 
units that simulate memory functions (Hochreiter & Schmidhuber, 1997). As a result, 
feed-forward architectures characterized by their basic principle of serial feed-forward 
processing still continue to dominate the field of machine learning. These systems learn 
essentially by establishing relations between a large set of input patterns and the activity of 
corresponding read-out units using labeled-line codes. Unlike natural systems they cannot 
exploit the temporal domain for their computation.

Natural Systems

These features of DNNs sharply contrast with those of natural neuronal networks, particu-
larly those of the cerebral cortex and hippocampus. Although the processing streams in 
the cerebral cortex exhibit similarities to the serial organization of multi-layered DNNs, 
notable differences are evident. In the cortex, nodes within each layer interact reciprocally 
through abundant recurrent connections, and there are extensive feedback connections 
from higher to lower layers of the processing hierarchy. Due to this recurrent connectiv-
ity and the tendency of the neurons (network nodes) to oscillate, cortical networks display 
highly complex, non-linear dynamics both at rest and when stimulated. At the population 
level, these dynamics manifest as an ensemble of oscillations across a wide range of fre-
quencies, extending from far below 1 Hz up to several hundred Hz. Furthermore, the nodes 
of the network conduct analog, non-linear computational operations on time-varying input 
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signals. These operations are primarily mediated by discrete frequency-modulated action 
potentials that reflect fluctuations in the sender’s membrane potential, which are then con-
verted by chemical synapses into graded fluctuations of the target neurons’ membrane 
potential.

To convey an intuition about the properties of such recurrent networks and their poten-
tial to perform useful computations, the metaphor of a liquid medium is often put forward. 
Imagine a pond of water into which stones are thrown in a sequence at different locations 
(Fig. 2). Each impact will generate a spreading wave whose origin, amplitude and wave-
length reflects the site, and the size, as well as the strength of the impact. After some time, 
the various waves will meet and generate a complex, high dimensional interference pat-
tern that eventually fades. If one places several sensors into the pond that measure the 
amplitude, frequency, and phase of the local oscillations, it is, in most cases, possible to 
reconstruct when and where the various impacts have occurred. The water "remembers" 
the impacts as long as the waves persist, and the interference pattern contains all the infor-
mation required to reconstruct the series of events (Fernando & Sojakka, 2003; Lu et al., 
2020). Thus, the water performs several interesting computations. It transforms a stimulus 
into a stimulus-specific oscillation, distributes information about the spatial and tempo-
ral properties of the stimulus over the whole medium, establishes relations between the 
spatial and temporal parameters of different events through interference, and transforms 
the low-dimensional sequence of stimuli into a high-dimensional dynamic pattern that is 
at each time-point defined by the spatial distribution of the amplitude, the frequency and 
the phase of the oscillations. Due to fading memory and the high dimensionality of the 
dynamic landscape, the medium permits the superposition of waves and the simultaneous 
representation of information about temporally segregated events. These powerful compu-
tational primitives can be exploited by recurrent architectures that support the propagation 
of waves.

It is important to note that these computations are analog, not digital and that they are 
performed in the same medium that also serves as a memory. Thus, there is no separation 
into memory and processing circuits as in conventional von Neumann digital computers. 
The low-dimensional input pattern is converted into a very high-dimensional interference 
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Fig. 2  Storage, superposition and processing of information in high-dimensional dynamic state spaces 
using waves. Left: Water drops eliciting oscillations and traveling waves on a water surface that lead to 
dynamically evolving interference patterns. Right: Schematic of a recurrent neuronal network in which sen-
sory and recurrent input result in similar dynamics such as traveling waves
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pattern, exploiting constructive and destructive interference phenomena. Therefore, input 
patterns that overlap in a low-dimensional space and hence are difficult to distinguish from 
one another get well segregated in the high-dimensional state space of the interference pat-
terns and hence can be classified more easily by appropriate read-out devices. Accordingly, 
this principle is exploited for numerous applications and is addressed as "liquid" or "reser-
voir" computing (Buonomano & Maass, 2009; Lukoševičius & Jaeger, 2009). As discussed 
above, perceptrons and DNNs also apply the principle of dimensionality expansion and 
reduction for pattern classification, but they do so by serial recombination of diverging 
and converging feed-forward connections rather than by exploiting dynamic features of 
network activity (Fig. 2).

Interestingly, the dynamics of recurrent neuronal networks resemble in several aspects 
those of the pond of water. Local activation of a node gives rise to spreading activity, so-
called traveling waves, that inform with some latency other nodes in the network, and this 
reverberating activity keeps the trace of the stimulus alive for some time, a phenomenon 
addressed as “fading memory” (Nikolic et al., 2009). If the networks are perturbed by more 
than one stimulus delivered either at different sites or in a sequence, the resulting trave-
ling waves will interact with one another and create a high-dimensional interference pat-
tern. However, natural recurrent networks have additional properties that greatly enhance 
their computational capacity. Interactions in our water example are mostly homogeneous 
and restricted to nearest neighbours. By contrast, in biological neuronal networks, nodes 
are coupled through connections that can also mediate direct interactions between remote 
nodes, and, most importantly, these coupling connections are anisotropic and have tempo-
rally modulated properties (short and long-term plasticity). While genetic programs deter-
mine the basic layout of these connections, their detailed architecture is modified exten-
sively by experience, resulting from interactions with the organism’s Umwelt.

The Internal Model of the World

In the visual cortex, neurons responding to stimulus features that often co-occur in natu-
ral environments will be activated more often at the same time than neurons responding 
to features that are rarely contingent. The consequence is that these neurons will become 
more strongly connected with one another than neurons that respond to features that rarely 
co-occur (Hebb, 1949). The reason is that the reciprocal connections between neurons are 
endowed with correlation-sensitive synapses, so-called Hebbian synapses. "Neurons wire 
together if they fire together" (Löwel & Singer, 1992). In this way, statistical regularities 
of the environment get incorporated into the architecture of the dense network of recurrent 
cortical connections. This allows the brain to build an internal model of the world, formed 
by a series of so-called priors, by evaluating temporal correlations among neuronal dis-
charges and translating these correlations into the functional architecture of recurrent con-
nections. During early development, these activity-dependent modifications lead to mac-
roscopic changes in connection architectures because a large fraction of initially formed 
connections is eliminated. Connections between neurons that are rarely activated together 
get pruned away. These activity-dependent modifications of recurrent coupling connections 
continue into adulthood and follow the same correlation rule but then are, in principle, 
confined to mostly reversible increases and decreases of synaptic efficiency (Artola et al., 
1990). The formation of new long-range connections is no longer possible. These activ-
ity-dependent modifications of coupling are considered the mechanism by which the brain 
acquires and stores knowledge about the structure of the world, knowledge that is required 
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to interpret sensory signals (Rao & Ballard, 1999). Thus, the recurrent networks of natural 
brains have a number of interesting properties, and this raises the question of to which 
extent these are actually exploited for information processing.

Dynamic Encoding of Relations in Recurrent Networks

In Perceptron-based feed-forward architectures, relations among features in input pat-
terns are encoded by converging connections onto conjunction-specific nodes (neurons), 
the responses of these nodes signaling the presence of a particular relation. The problem 
with this explicit representation of relations, also addressed as labeled line coding, is the 
combinatorial explosion of required conjunction-specific nodes as the number of relations 
increases. This makes the labeled line strategy, as well as its recent extension to trans-
former networks, costly in terms of hardware. A complementary strategy to capture rela-
tions among components or features relies on dynamic combinatorial codes, similar to 
those used by natural languages. This strategy was proposed by Donald Hebb (1949) more 
than half a century ago. It posits that relations among components should be encoded by 
transiently binding feature-selective neurons into functionally coherent assemblies, the 
Hebbian assembly. Through cooperative interactions, these neurons would collectively sig-
nal the presence of a particular constellation of components. The formation of such tran-
sient assemblies requires self-organized cooperativity among network nodes and is, there-
fore, difficult to implement in feed-forward architectures that cannot exploit time for coding 
relations. By contrast, the required interactions can be realized elegantly in recurrent net-
work architectures, which incorporate time as a crucial coding dimension. According to 
Hebb’s proposal, the recurrent, reciprocal connections must be endowed with correlation-
sensitive synaptic plasticity mechanisms (Hebbian synapses) in order to preferentially sta-
bilize the activity of assemblies of cells representing frequent or meaningful constellations 
of features. With exposure to natural visual scenes, nodes tuned to frequently cooccurring 
features would become coupled more strongly and, therefore, engage more readily in coop-
erative interactions when activated by the respective feature constellation. As discussed 
above, these important prerequisites have meanwhile been confirmed experimentally. 
In this coding scheme, conjunctions of features are represented by groups of temporar-
ily cooperating nodes rather than individual conjunction-specific neurons. This allows the 
flexible and dynamical recombination of nodes to capture different constellations of fea-
tures, elegantly overcoming the problem of the combinatorial explosion caused by labeled 
line codes. In artificial systems relying on labeled line codes, this problem is solvable only 
with brute force (hardware).

Another advantage of recurrent processing is that it can exploit not only the rate of dis-
charges but also their relative timing for computations. This expands considerably the cod-
ing space and also accelerates processing speed. Donald Hebb (1949) had initially proposed 
that nodes forming a cooperating assembly should be distinguished by joint increases of 
discharge (firing) rate. And there is indeed evidence that recurrent interactions can enhance 
discharge frequency (Peron et  al., 2020). However, the notion that cooperating neurons 
should be distinguished solely by joint increases in discharge rate has been challenged (for 
a review, see Singer, 1999). First, different simultaneously active and spatially intermin-
gled assemblies are difficult to distinguish from one another if all neurons participating 
in assemblies simply discharge more vigorously—a complication addressed as the “super-
position problem” (von der Malsburg & Schneider, 1986; Milner, 1992a, 1992b). Second, 
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increases in discharge rate are an ambiguous signature for a relational code because dis-
charge rates also reflect stimulus energy and/or the quality of matches between stimulus 
and receptive field properties that need not necessarily serve feature binding. Third, distin-
guishing cooperating neurons on the mere basis of enhanced discharge rates slows down 
processing speed because discharge rates of cortical neurons are low and can carry only 
little information when integrated over short time intervals (Averbeck et al., 2006; Peron 
et al., 2020).

The serendipitous finding that neurons in the visual cortex can engage in synchronous 
oscillatory firing when driven by stimuli that possess related features offered solutions to 
the problems associated with rate-coded assemblies. Neurons in the visual cortex activated 
by continuous contours were found to synchronize their spike discharges with millisecond 
precision if located in functional columns segregated by up to 7 mm (Gray & Singer, 1989; 
Gray et al., 1989). Because synchronization enhances the impact of discharges in down-
stream targets (Abeles, 1991; Bruno & Sakmann, 2006; Salinas & Sejnowski, 2001), it was 
proposed that the joint increase in the salience of precisely synchronized discharges, rather 
than joint rate increases, would identify the transiently cooperating nodes of an assembly. 
This temporal code would substantially reduce the superposition problem because coinci-
dence-sensitive downstream neurons can distinguish between different synchronous events 
with high temporal resolution (Singer, 1999; Milner, 1992a, 1992b; von der Malsburg & 
Buhmann, 1992; for reviews, see Singer & Gray, 1995). For the same reason, encoding 
relations by coincident firing rather than joint rate increases would allow for much faster 
detection of cooperating nodes (Van Rullen et al., 2005), and also render the signature of 
relatedness independent of rate fluctuations.

The Relation Between Gestalt Rules and Response Synchronization

Analysis of the synchronization phenomena observed in the visual cortex revealed that 
neurons transiently synchronized their discharges with millisecond precision when co-acti-
vated by continuous contours, collinearly aligned contour segments, contours sharing the 
same orientation, and contours moving with the same speed in the same direction (Gray 
et  al., 1989; Singer & Gray, 1995). These feature constellations correspond to the basic 
Gestalt criteria for perceptual grouping, contiguity, continuity, similarity and common fate. 
This indicates that synchronization probability reflects the statistical regularities of natu-
ral environments and suggests that it could serve feature binding by generating Hebbian 
assemblies (for a review, see Singer, 1999). Support for this possibility came from the evi-
dence that grouping by synchronization turned out to be dynamic and context-sensitive: 
Typically, when a single elongated moving contour is presented, all nodes activated by 
this contour synchronize their discharges (Gray et al., 1989; Livingstone, 1996). However, 
when two contours with different orientations overlap in space and move in different direc-
tions, the activated neurons split up into two groups (Castelo-Branco et al., 2000; Engel 
et al., 1991a; Kreiter & Singer, 1996). The neurons within each group discharge in syn-
chrony, but there is no correlation at millisecond time scales among the discharges of neu-
rons belonging to different groups. This self-organized grouping depends on the respective 
preferences of the neurons for the two contours. Neurons preferring the orientation of stim-
ulus one over that of stimulus two join in the synchronization group driven best by stimu-
lus one and vice versa. Thus, the synchronized firing of neurons is context-sensitive and 
signals whether the neurons are activated by a single “object” or two different “objects.” 
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As the discharge rates of all neurons were elevated to the same extent, this segregation of 
neurons into two distinct groups would not have been detectable by decoding only the rate 
responses. Simulations of recurrent networks with enhanced coupling of nodes tuned to 
groupable features have reproduced such context-dependent synchronization phenomena 
(König & Schillen, 1991; Schillen & König, 1991, 1994). The results of these and related 
studies eventually led to the proposal that transient and context-sensitive synchronization 
of discharges could serve as a mechanism for perceptual grouping and inspired the “bind-
ing by synchrony” (BBS) hypothesis (Singer, 1993).

Synchrony and Oscillations

Stimuli whose constellation of features matches the priors stored in the weight distribu-
tion of the recurrent connections not only induce synchronous firing among neurons 
tuned to features predicted to be related but also cause an oscillatory modulation of the 
responses in the gamma frequency range that is centered around 40 Hz. This frequency 
range is characteristic of local synchronization events, while synchronization at lower fre-
quencies is observed over longer distances and is supposed to ensure the binding of pro-
cesses between areas of the cerebral cortex. Stimuli rich in features matching stored priors, 
such as drifting gratings evoke synchronous oscillations in large ensembles of neurons, and 
these oscillations can then be detected even on the cortical surface or with extracranial 
recordings. Because increases in oscillatory power and spike synchronization covary, the 
important distinction between oscillatory patterning and spike synchronization got blurred, 
and the two phenomena are often regarded as equivalent (Stryker, 1989). Consequently, 
band-passed oscillations and their coherence rather than the timing relations among dis-
charges of distributed neurons became the target variable in numerous studies investigat-
ing response synchronization (for review of the extensive literature on oscillations, see 
Fries, 2005, 2015; Buzsáki, 2006; Buzsáki et al., 2013; Singer, 2018). However, it has been 
argued that what matters for information processing are not the oscillations per se but the 
rate and the precise timing relations of discharges. The oscillatory patterning of responses 
so goes the argument, could have been simply an epiphenomenon of circuit interactions. 
Recurrent inhibition serves functions such as contrast enhancement, gain control, noise 
suppression, or winner-take-all mechanisms but inevitably also causes oscillations. Thus, 
it remained a matter of vivid debate whether oscillatory mechanisms play a role in cortical 
computations. Because oscillations are only sustained and stable in frequency under spe-
cial stimulation conditions (Chen et al., 2014), vary in frequency as a function of stimulus 
energy and visual field eccentricity (Ray & Maunsell, 2010), and, if synchronized globally, 
limit the capacity of information transfer, oscillation-based synchrony was considered an 
epiphenomenon and irrelevant for information processing (for a review, see Ray & Maun-
sell, 2015). Moreover, more recent investigations in awake animals have revealed that syn-
chronization of discharges, while often associated with oscillations, is not dependent on the 
occurrence of sustained oscillatory activity. Typically, episodes of synchronized firing are 
transient, occur in short bouts, follow at irregular intervals, and, if associated with oscil-
lations, the oscillations tend to persist only over a few cycles (Chauvière & Singer, 2019; 
Lowet et al., 2016, 2017; Lundqvist et al., 2016). However, if nodes of neuronal networks 
have the propensity to oscillate - for which there is ample evidence (Börgers & Kopell, 
2003; Buzsáki & Draguhn, 2004; Gray & McCormick, 1996; Jansen & Rit, 1995; Onorato 
et al., 2020; Spyropoulos et al., 2022) a host of dynamic phenomena emerge beyond the 
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occurrence of local oscillations, which may be relevant for computations. In simultane-
ous recordings from multiple nodes of cortical networks these dynamics manifest in long-
range synchronization of discharges (Engel et al., 1991b), as frequency-varying oscillations 
(Kayser et al., 2003), transient synchronization or desynchronization of discharges (Glasser 
et al., 2016), resonance (Gross et al., 1972), entrainment (Tsao, et al., 2006), phase shifts 
(Hirabayashi et  al., 2013), and traveling waves (Bell & Sejnowski, 1997; Olshausen & 
Field, 1996; Quiroga et al., 2005).

Unfortunately, it is notoriously difficult to determine in physiological experiments 
whether any of these dynamical phenomena serves a functional role because of the com-
plexity, non-stationarity, and variability of the dynamics, the technical limitations to moni-
toring the activity of a sufficient number of nodes with the required temporal resolution, 
and the difficulty to apply knockout or gain-of-function strategies to prove causal relations. 
Interfering with single variables of such complex, highly integrated systems as recurrent 
networks inevitably impacts the behavior of the entire system, making it difficult to assess 
the putative function of a particular feature. Therefore, most of the evidence for a relation 
between spike synchronization, oscillatory patterning of neuronal discharges, and particu-
lar cognitive functions is only correlative in nature. So far, no experimental approach has 
been able to provide causal evidence for the functional relevance of oscillatory activity. 
This is a burning issue because the oscillatory patterning of neuronal responses is a ubiq-
uitous phenomenon, and measures derived from these temporal patterns, such as frequency 
spectra, coherence, phase stability, and synchronization, are widely used as diagnostic tools 
of brain states in health and disease.

A Comprehensive Simulation Study

To alleviate the epistemic problem of distinguishing between relevant and epiphenomenal 
features of brain dynamics, we opted for a synthetic bottom-up approach. We simulated 
recurrent neuronal networks (RNNs) and implemented step-by-step characteristic features 
of neuronal circuits that had been identified experimentally. Subsequently, we tested the 
functional consequences of these additions by comparing the networks’ performance on 
standard benchmark tests for pattern classification (Fig. 3).

In the first step, inspired by physiological experiments (Spyropoulos et  al., 2022), 
we examined the consequences of configuring the network nodes as damped harmonic 
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Fig. 3  Harmonic Oscillator Recurrent Network (HORN) architecture. A. A HORN network consisting of 
recurrently coupled damped harmonic oscillator (DHO) nodes. Each node models the aggregate recurrent 
dynamics of a local cortical microcircuit. B. Relaxation dynamics of a DHO node for varying values of the 
natural frequency parameter ω (top) and the damping parameter γ (bottom)
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oscillators (DHOs), a characteristic property of cortical microcircuits. We call such net-
works harmonic oscillator RNNs (HORNs).

To our surprise, we found that this was a decisive step. The HORNs outperformed, 
sometimes by orders of magnitude, RNNs without oscillating units such as, e.g., leaky 
integrators, with respect to parameter efficiency, task performance, learning speed, and 
noise tolerance. Encouraged by these findings, we continued to implement additional 
characteristics of cortical networks in HORNs. We endowed them with nodes that prefer 
different oscillation frequencies, introduced heterogeneous conduction velocities for the 
recurrent connections, and implemented Hebbian synapses. In addition, we recurrently 
coupled two HORNs in order to examine the putative advantages of multilayer architec-
tures as found in the brain. The inclusion of these biologically inspired features resulted 
in further improved task performance without increasing the number of trainable vari-
ables (for details see Effenberger et al., 2025).

In-depth analyses of network dynamics uncovered a genuinely novel and power-
ful computational principle that exploits the rich transient and relaxation dynamics of 
coupled oscillators and casts a new view on recurrent network dynamics. Because the 
nodes of HORNs convert all stimuli in oscillatory responses, this allows the network to 
engage in highly dynamic interactions that are characterized by synchronization, reso-
nance, entrainment, frequency and phase shifts, and dynamic gain modulation. Conse-
quently, the networks can fully exploit both the spatial and the temporal dimensions for 
computations.

We consider it of particular importance that our network transforms all stimulus 
parameters into the continuous variables of oscillations because this permits analog 
computations. The traveling waves of reverberating activity and the resulting interfer-
ence between the responses of the interconnected nodes permit a virtually simultane-
ous evaluation of both spatial and temporal relations between multiple, spatially and 
temporally segregated stimuli. And because the functional architecture of the recurrent 
coupling connections represents an internal model of the world, this computation within 
memory allows for a highly parallelized match of sensory evidence with stored priors. 
All these operations are crucial prerequisites for perceptual processes such as feature 
binding, scene segmentation, and, ultimately, the representation of complex perceptual 
objects.

It is noteworthy to state that in this framework, the representations of perceptual 
objects do not consist of pattern-specific read-out units but are distributed across nodes, 
non-stationary and holistic. Representations consist of dynamic landscapes that exhibit 
a complex and fine-grained correlation structure (Fig. 4). As all nodes, not only those 
stimulated directly, contribute to these representations, stimulus-specific information 
can be extracted from all nodes, like in a hologram. In the cerebral cortex, the read-out 
of these activity landscapes does not require convergence of the nodes’ activity onto 
classifier units. The distributed activity patterns serve, in turn, as highly parallel input 
to downstream recurrent neuronal networks whose nodes are reciprocally connected to 
nodes of the respective upstream areas through divergent and convergent feed-forward 
and feed-back connections. Thus, there is no bottleneck in the processing stream from 
sensory to executive cortical areas. Rather, distributed dynamic representations emerge 
at all stages of processing, including the motor-cortex. A motor command needs to 
orchestrate the cooperation of myriads of muscle cells and is best implemented by a dis-
tributed spatially and temporally structured activity landscape that is generated accord-
ing to the same principles as the representations in sensory cortices.
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Documentation of HORNs Basic Structural and Functional Features

In the following, a few of the most characteristic properties of the HORNs will be pre-
sented to support the conclusions summarized above.

Oscillating Network Nodes

To facilitate the analysis of principles, we designed a simple RNN and configured the 
nodes as damped harmonic oscillators (DHOs). We opted for DHOs for the following 
reasons: First, they are the canonical implementation of an oscillatory process. Second, 
in neuronal microcircuits, damped harmonic oscillations generically result from excit-
atory-inhibitory interactions or negative feedback subject to a damping force (Buzsáki 
& Draguhn, 2004; Jansen & Rit, 1995). Moreover, their dynamics are easily interpret-
able and controllable by two parameters. Each DHO node has one state variable x, the 
oscillator’s time-varying amplitude, and three parameters that jointly control its relaxa-
tion dynamics: the natural frequency ω, the damping coefficient γ, and an excitability 
coefficient α. This makes DHOs the most basic choice for introducing oscillations at 
the level of a single network node (Fig. 5). It is important to note that already a sin-
gle DHO node possesses intriguing computational capabilities that are not accessible 
to non-oscillating nodes such as leaky integrators. DHOs can gain-modulate an input 
signal in a non-linear way as a function of its frequency profile and encode stimulus 
information in the oscillation phase. Moreover, the combination of the input non-line-
arity with the biologically inspired feedback connections endows the DHO nodes with 
a dynamical repertoire that goes far beyond that of a classical damped harmonic oscil-
lator. Among other things, it allows nodes to express self-sustained oscillations, and to 
resonate at fractional harmonics of their natural frequency.
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Fig. 4  Dynamics and correlation structure in HORN networks. A. Dynamics of 16 DHO nodes of a hetero-
geneous HORN trained on MNIST digit recognition resulting from the stimulation with a serialized MNIST 
digit. Vertical axis shows unit amplitude, horizontal axis shows time. B. Pairwise Pearson correlation coef-
ficients of nodal dynamics of a 16 node HORN before (top row) and after learning (bottom row) show 
the emergence of learning-induced, fine-scale, stimulus-specific correlation structures in HORN network 
dynamics. Columns show different MNIST digit classes. Value of correlation coefficient color-coded (scale 
on right)
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Homogeneous Networks

We first designed homogeneous HORN  (HORNh) networks with all-to-all connectivity, 
no conduction delays, and identical parameter values ω, γ, α, for all nodes. As cortical 
circuits operate in a balanced state where excitatory and inhibitory drive cancels in the 
mean (E/I balance), emphasizing the significance of fluctuations, we chose to couple DHO 
units on their velocity term. Stimuli were presented to the networks in the form of time 
series. We tested the networks on several well-established pattern recognition tasks, one 
of those is the MNIST handwritten digit recognition dataset. To transform the image of 
an MNIST digit into a time series, henceforth addressed as an sMNIST stimulus, intensity 
values were collected in scan-line order from top left to bottom right of the images. The 
networks were initially trained for the classification of sMNIST stimuli in a supervised way 
using the backpropagation through time (BPTT) algorithm. As DHOs resonate with input 
frequencies around ωv, values of ω were chosen that enabled the nodes to extract and retain 
the information contained in time series resulting from continuous lines of different slopes. 
Thus, by adjusting ω, the network can be adapted to the statistical regularities of sMN-
IST stimuli, and this setting of priors enhances performance by allowing feature extrac-
tion through resonance rather than just through selective recombination of convergent input 
connections. To the best of our knowledge, this strategy of feature extraction has not been 
proposed previously and crucially depends on units or microcircuits with the propensity to 
oscillate.

Our benchmark tests revealed that these simple homogeneous HORN networks sub-
stantially outperformed state-of-the-art gated RNN architectures with respect to learning 
speed, absolute performance, and noise tolerance at the same number of learnable param-
eters. In addition, HORNs proved extraordinarily noise resilient, showing only a gradual 
decline in task performance with increasing noise levels, in contrast to other architectures 
studied (Fig. 6).

We identified several reasons for the high performance of the HORNs. (i) The kinet-
ics of each DHO node turn arbitrary input into harmonic oscillations, thereby struc-
turing the networks’ state spaces and allowing for dynamic phenomena such as fad-
ing memory, resonance, entrainment, fine-scale synchronization, phase shifts, and 
desynchronization both on the single node and on the network level. These dynamic 

A B

Fig. 5  HORN learning and inference on sMNIST corrupted by varying levels of additive white Gaussian 
noise. A. Maximal test accuracy of different RNN architectures  (104 trainable parameters) after training on 
noisy sMNIST for 100 epochs as a function of training stimulus noise level σ2

train. B. Test accuracy of dif-
ferent network architectures trained on noisy sMNIST with σ2

train = 1 (dashed vertical line) as a function of 
test stimulus noise level σ2

train. Lines show means calculated over 1000 test stimuli
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phenomena can then be exploited for learning. (ii) “Innate” preference for stimulus fea-
tures (controlled by the values of ω,γ,α) allowed individual nodes to efficiently extract 
and encode stimulus features already in an untrained network by means of resonance. 
As expected, before learning, the dynamics of homogeneous HORN networks is domi-
nated by large-scale synchronization among the nodes. As learning progresses, global 
synchronization decreases, which enhances the dimensionality of network dynamics. 
This reduction in global synchronization is accompanied by the emergence of complex, 
spatiotemporally structured correlation and higher-order synchronization patterns that 
are stimulus-specific, well segregated in the high-dimensional activity landscape of the 
network, and well classifiable by a linear read-out. For a detailed description of these 
properties, see Effenberger et al., 2025.

Heterogeneous Networks

The structural and functional organization of mature cortical networks is characterized 
by heterogeneity (Murray et al., 2014; Wang et al., 2006). However, it is unclear whether 
this variability plays a functional role. To test whether increasing network heterogeneity 
enhances performance, we simulated non-homogeneous HORNs  (HORNn) in which each 
node had a different natural frequency, damping coefficient, and excitability. As expected, 
heterogeneous HORNs responded already in the untrained state with more complex 
and less globally synchronized patterns. As in the homogeneous case, global synchrony 
decreased further as learning progressed. Here again, the decrease in global synchrony led 
to a significant increase in the dimensionality of the dynamics, but the dimensionality of 
the dynamics was much higher compared to their homogeneous counterparts already in 
the first training steps. A comparison between homogeneous and heterogeneous HORNs 
revealed the superior performance of the latter with respect to learning speed and noise 
tolerance, in particular for the more challenging psMNIST data set in which the pixel loca-
tions are randomized, resulting in more complex spectral properties of the stimuli (Fig. 7). 
We found that heterogeneity increases network expressivity and can alleviate the need 
for computationally expensive (and for biological systems likely unfeasible) parameter 
searches.

A B

Fig. 6  Performance of different RNN architectures in classifying shuffled sequential MNIST (psMNIST) 
stimuli as a function of system size. Legend on the right. A. Test accuracy after 400 back-propagation learn-
ing steps. B. Test accuracy after 100 training epochs. Note the increased task performance of the hetero-
geneous HORN in comparison to the homogeneous network in the case of the spectrally more complex 
psMNIST stimuli
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Delays

In the cerebral cortex, neurons interact through relatively slow conducting nerve fibers (0.5 
to 10 m/s), which introduces considerable, widely scattered, distance-dependent coupling 
delays (Ferster & Lindström, 1983). To test the influence of introducing coupling delays on 
task performance, we started with a  HORNh and endowed all recurrent connections with 
uniformly distributed variable coupling delays (d). This manipulation increased HORN 
performance in both maximal classification accuracy and learning speed on psMNIST 
(Fig. 8). Increasing dmax, which results in greater heterogeneity, was found to increase task 
performance, and this gain of function increased with increasing values of dmax. Thus, as 
for the preferred oscillation frequencies, heterogeneity in conduction delays enables the 
generation of more diverse spatiotemporally structured activity landscapes in HORNs, 

400 learning steps 4690 learning steps

Fig. 7  Performance of HORNs with connection delays. Maximum test accuracy on psMNIST after 400 
training steps (left) and after 4690 training steps (right), respectively, as a function of maximal synaptic 
delay  dmax. For each network, connection delays were sampled from a uniform distribution U([1,  dmax]). A 
network with  dmax = 1 corresponds to a regular HORN. Lines show mean performance over 10 randomly 
initialized networks, shaded areas standard deviation

B
untrained 400 training steps

A

Fig. 8  Hebbian learning in HORNs. A. Scatter plots of connection weights  Whh and mean cross-correlation 
coefficients  CCij of node activities of a 64-node homogeneous HORN before (left) and after training on 
psMNIST for 500 training steps (right). The  CCij were computed for a random, but fixed set of 100 samples. 
Linear regression lines shown in red. Histograms on the top and right show marginal distributions of  CCij 
and  Whh, respectively. Note the bimodal distribution of correlation coefficients with modes around −1, 1 
in the untrained state and the more decorrelated network activity resulting after learning. B. Performance 
of 64-node homogeneous HORNs as a function of training steps when instances of the same network are 
trained with correlation-based Hebbian (suffix Hebb+) or anti-Hebbian (suffix Hebb-) learning rules, com-
pared to instances trained with BPTT and plastic connections  Whh (suffix BPTT) and with frozen  Whh (suf-
fix reservoir). The input and readout parameters are trained with BPTT for all instances. Curves show mean 
performance over 10 network instances with random weight initialization, shaded areas standard deviation. 
Note the strong performance of the anti-Hebbian rule for this initially highly synchronized network
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thereby increasing the dimensionality of the networks’ state space. This again results in 
enhanced HORN performance and alleviates the need for parameter tuning, in particular 
for datasets with complex spectral properties or changing noise characteristics. Hence, we 
hypothesize that the heterogeneity of natural systems is likely not a reflection of unavoid-
able imprecision but developed in order to increase the dimension of the available coding 
space and to enable the networks to cope with a large variety of stimuli.

Hebbian Learning

Experimental evidence suggests that biological neuronal networks learn to represent char-
acteristic feature constellations of perceptual objects through Hebbian modifications of 
synaptic gain (see above and Hebb, 1949). Thus, neurons that encode features that fre-
quently co-occur become more strongly coupled and, therefore, self-organize to form a 
functionally coherent stimulus-specific assembly (Lazar et al., 2021).

To test whether gradient-based training of HORNs produces weight distributions 
compatible with those predicted by Hebbian learning principles, we compared recurrent 
weight distributions and the corresponding correlation structure of responses before and 
after learning. To our surprise, we found that the changes in synaptic weights of HORNs 
induced by BPTT are similar to those predicted by a Hebbian mechanism. The BPTT 
learning algorithm apparently capitalizes on the stimulus-specific correlation structure of 
network activity and enhances those connections that induce correlation patterns character-
istic of a particular stimulus. As expected, heterogeneous HORNs could exploit stimulus-
specific correlation structures right from the beginning of training. Homogeneous HORNs, 
by contrast, must first learn to desynchronize to increase the dimensionality of their state 
space, which slows down learning speed.

To investigate whether BPTT could be substituted by correlation-based learning, we 
implemented simple unsupervised additive (conventional) Hebbian, as well as anti-Heb-
bian rules for the activity-dependent modifications of the recurrent connections. During 
training, we disabled BPTT learning on the recurrent connections while keeping it active 
for the input and readout connections. As a performance baseline, we trained a HORN in 
which the recurrent connections were kept fixed, and only the input and readout connec-
tions were trained. In the case of homogeneous networks, the application of a fully unsu-
pervised Hebbian rule resulted in a task performance surprisingly close to that attained 
when the recurrent connections were trained by the fully supervised BPTT rule (Fig. 9). 
In conclusion, the propensity of the network nodes to engage in oscillatory activity and the 
resulting amplification of specific correlations by resonance enabled the Hebbian mecha-
nism to install stimulus-specific priors in the network architecture and to thereby orthogo-
nalize representations in the high dimensional state space.

Overall, the results demonstrate that unsupervised Hebbian learning at the level of 
recurrent connections in HORNs aids in the segregation of stimulus-specific dynamic 
states, thereby facilitating their classification.

Spontaneous and Evoked Activity

Cortical networks are spontaneously active, and in sensory cortices, stimulation typi-
cally causes a reduction in the variability of this activity and leads to the emergence of 
stimulus-specific substates (Bányai et al., 2019; Berkes et al., 2011; Churchland et al., 
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2010). To model spontaneous activity in HORNs, we subjected each DHO node to ran-
dom discrete jumps in its velocity by a given amount according to a Poisson process.

After training a spontaneously active heterogeneous HORN on sMINST, we ana-
lyzed network activity before, during, and after stimulation with sMNIST stimuli. Dur-
ing stimulation, spontaneous activity was replaced by the structured time series cor-
responding to the sMNIST digits. Analysis of the activity of both single nodes and 
the entire network showed that the variance of activity was high before stimulation, 
decreased during stimulation, and then recovered to pre-stimulus levels after stimulus 
offset. Principal component analysis (PCA) revealed that the state space of spontane-
ous activity spans a large but confined space that comprised the subspaces of stimu-
lation-induced stimulus-specific response vectors. The reason for this confinement of 
the spontaneous state is that the connectivity of the trained HORN is not random but 
highly structured through learning. In trained HORNs, the weight distribution of the 
recurrent connections reflects the statistical regularities of the learned sMNIST stim-
uli. This structure of the coupling connections, in turn, shapes the dynamics of the net-
work. Thus, spontaneous activity can be considered as a superposition of fragments of 
learned stimulus-specific representations. The temporal evolution of network dynamics 
in PCA space shows that network dynamics rapidly converges to a stimulus-specific 
substate once a stimulus is presented and that this specificity fades after stimulus offset 
(Fig. 9). At the same time, this collapse towards a stimulus-specific substate is associ-
ated with a reduction of variance of activity. Again, very similar, stimulation-depend-
ent changes in network dynamics have been reported for natural networks (Churchland 
et al., 2010; Lazar et al., 2021; Singer, 2021).
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Fig. 9  Spontaneous and evoked activity in a 16-node heterogeneous HORN trained on sMNIST. A. Mean 
and standard deviation of amplitude dynamics computed over 500 samples of the sMNIST digit 0. Top: 
Mean amplitude μ and standard deviation of mean amplitude σ computed for the entire network. Bottom: 
Mean and standard deviation of amplitude dynamics of one selected DHO node. Dashed lines mark stimu-
lus onset (t = 1000) and offset (t = 1784), respectively. B. Sliding window analysis of principal components 
of network activity (window size 20 time steps). Ellipses show 2σ confidence intervals, MNIST stimulus 
classes are color-coded (legend on right, S = spontaneous activity)
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Concluding Remarks

The implementation of characteristic features of the mammalian cerebral cortex in sim-
ulated RNNs uncovered, to the best of our knowledge, a genuinely novel and extremely 
powerful computational principle that exploits the unique dynamics of coupled oscillators 
and drastically enhances the performance of a recurrent network in a pattern classifica-
tion task. Recurrent networks without oscillating nodes can, under certain circumstances, 
also engage in oscillatory activity. However, these oscillations are an emergent property of 
network interactions, highly variable and not controllable. Hence, this makes it difficult to 
determine their putative functions. We consider it unlikely that they can support computa-
tions and learning. In HORNs, the oscillations are tightly controlled and this allowed us 
to assess the functions of oscillations per se by comparing the performance of networks 
with and without oscillating nodes. The reason why oscillating nodes boost performance is 
that the network can take advantage of the rich dynamics of reciprocally coupled oscilla-
tors (Buzsáki & Wang, 2012; Cardin et al., 2009; Gray et al., 1989; Lachaux et al., 1999). 
These dynamics allow HORNs to exploit for computations not only spatial distributions of 
response amplitudes but also temporal variables such as resonance, entrainment, synchrony 
and asynchrony, reverberation, phase shifts, and fading memory. This also sets them apart 
from models based on attractor dynamics, such as the ones realized in Ising models and 
their associated Hopfield networks (Hopfield, 1982). Importantly, single network nodes in 
our model are intrinsically feature selective not only as a result of specific combinations of 
input connections, the strategy used in labeled line coding, but because of preferred reso-
nance frequencies and non-linear gain modulation. Moreover, the oscillatory nature of the 
nodes’ activity turns any input into a damped harmonic oscillation. Consequently, stimulus 
representations oscillate, a property that can be exploited for faster learning (see Dubinin 
& Effenberger, 2023 for a detailed analysis).

The DHO units in a HORN network collectively process stimuli in a fully distributed 
manner by converting sensory input into waves that spread and give rise to complex inter-
ference patterns (Hughes, 1995; Muller et al., 2018). This representation provides a cod-
ing space of massive dimensionality. It allows the networks to cope effectively with the 
encoding of time series and the superposition of information about spatially and temporally 
segregated events.

The introduction of physiologically plausible heterogeneity further enhanced perfor-
mance at the same number of trainable parameters because it increased the dimensional-
ity of the networks’ state spaces and allowed them to simultaneously process stimuli on 
several time scales. Such heterogeneity endowed even untrained networks with sensitivity 
to a broader range of correlation structures that could be exploited by subsequent learning, 
accelerating learning speed. Most importantly, heterogeneity enhanced the ability to pro-
cess stimuli with novel characteristics, alleviating the need for fine-tuning or the cumber-
some search for optimal stimulus-specific parameters. Thus, heterogeneity is functionally 
beneficial and likely not a by-product of nature’s imprecision.

Quite unexpectedly, gradient-based BPTT learning in HORNs resulted in changes in 
the coupling strengths of the recurrent connections that closely resemble those predicted 
by Hebbian principles. This provides strong support for the concept formulated by Singer 
(2021) that biologically plausible unsupervised correlation-based learning can install pri-
ors about statistical regularities of stimuli in the network’s synaptic weight distributions, 
which, in turn, shape dynamic stimulus representations useful for stimulus discrimination. 
Our results provide a proof of concept that unsupervised learning rules can, in principle, 
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replace the physiologically implausible back-propagation method. Finally, spontaneously 
active HORNs were shown to reproduce important hallmarks of experimental findings, 
such as the stimulus-induced reduction of variance (Churchland et al., 2010) and the tran-
sient convergence of network dynamics to stimulus-specific substates (Singer, 2021).

Taken together, these findings not only unveil powerful novel principles based on 
analog computation but also allow for a functional interpretation of numerous experimen-
tally verified physiological phenomena whose roles in information processing so far have 
been elusive or have caused controversial discussions. Plausible functional roles can now 
be assigned to (i) the propensity of nodes to oscillate and the resulting dynamical phe-
nomena such as synchronization, desynchronization, resonance, entrainment, and traveling 
waves (Cardin et al., 2009; Davis et al., 2020; Doelling & Poeppel, 2015; Lachaux et al., 
1999; Muller et al., 2018; Singer, 1993), (ii) the diversity of preferred oscillation frequen-
cies, their non-stationarity and context dependence (Llinas, 1988; Engel et al., 1992), (iii) 
the heterogeneity of the conduction velocities of recurrent connections (Swadlow, 1985; 
Waxman, 1980), (iv) the Hebbian adaptivity of recurrent connections (Magee & Johnston, 
1997; Markram et al., 1997), (v) the emergence of context-dependent dynamic receptive 
fields by network interactions (Blakemore et al., 1970; David, 2004), (vi) the decrease of 
oscillation frequencies in higher areas of the cortical processing hierarchy (Markov et al., 
2013), and (vii) the reduction of variance in network dynamics during stimulus presen-
tation (Churchland et al., 2010). The simulations also suggest a physiologically plausible 
scenario for the rapid and parallel matching of sensory evidence with stored priors through 
self-organized convergence of network dynamics to classifiable, stimulus-specific, dynamic 
substates. These substates consist of highly structured, high-dimensional dynamical land-
scapes that unfold in amplitude, frequency, and phase space.

In essence, such networks of coupled oscillators perform highly parallelized analog 
computations in very high-dimensional state space. This allows the networks to relate a 
large number of input variables simultaneously. We propose that this is why biological 
systems can solve extremely complex problems such as feature binding, scene segmenta-
tion or speech parsing so fast and efficiently despite the slowness of their constituting neu-
rons. Problems of this type require the virtually simultaneous analysis of a vast number of 
nested relations and are notoriously difficult to solve with digital von Neumann computing 
architectures.

Exploiting quantum effects was one possibility for an efficient solution to such prob-
lems. Yet, it is commonly believed that biological systems cannot exploit quantum effects 
for computation. Therefore, we hypothesize that nature solves such hard problems employ-
ing analog computations of the kind described in this paper. At the conceptual level, the 
highly parallel, analog, and holistic computations realized in HORNs share numerous 
similarities with the computations performed in quantum systems. The superposition and 
interactions of phases in case of biological networks share similarities with the superposi-
tion and interaction of spins in physical systems (Moy et  al., 2022). Being a non-quan-
tum model, HORNs cannot emulate the phenomenon of quantum entanglement. However, 
HORNS and, most likely also, cortical networks exploit their ability to use the interference 
of superimposed waves for highly parallelized analog computations.

We think that it will be possible to implement the computational principle presented 
here in analog hardware that, in contrast to quantum systems, runs at room temperature, is 
miniaturisable, and highly energy efficient. We predict that this novel principle will likely 
enable the design of self-adapting and learning devices for machine learning applications 
that can ideally complement existing digital technologies.



 Singer et al.

Author Contribution W.S. and F.E. wrote the manuscript together. W.S. focused on the neurobiological and 
F.E. on the computational issues.

Funding Open Access funding enabled and organized by Projekt DEAL. Koselleck-Project, DFG (GZ: SI 
505/22–1) and Ernst Strüngmann Institute for Neuroscience.

Data Availability No datasets were generated or analyzed during the current study.

Declarations 

Ethical Approval Not applicable.

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abeles, M. (1991). Corticonics. Cambridge University Press.
Artola, A., Bröcher, S., & Singer, W. (1990). Different voltage-dependent thresholds for the induction of 

long-term depression and long-term potentiation in slices of the rat visual cortex. Nature, 347, 69–72.
Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computa-

tion. Nature Reviews Neuroscience, 7, 358–366.
Bányai, M., Lazar, A., Klein, L., Klon-Lipok, J., Stippinger, M., Singer, W., & Orbán, G. (2019). Stimulus 

complexity shapes response correlations in primary visual cortex. Proceedings of the National Acad-
emy of Sciences of the USA, 116(7), 2723–2732.

Bell, A. J., & Sejnowski, T. J. (1997). The “independent components” of natural scenes are edge filters. 
Vision Research, 37(23), 3327–3338.

Berkes, P., Orbán, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an 
optimal internal model of the environment. Science, 331, 83–87.

Blakemore, C., Nachmias, J., & Sutton, P. (1970). The perceived spatial frequency shift: Evidence for fre-
quency-selective neurones in the human brain. The Journal of Physiology, 210(3), 727–750.

Börgers, C., & Kopell, N. (2003). Synchronization in networks of excitatory and inhibitory neurons with 
sparse, random connectivity. Neural Computation, 15, 509–538.

Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature Neuroscience, 20, 340–352.
Bruno, R. M., & Sakmann, B. (2006). Cortex is driven by weak but synchronously active thalamocortical 

synapses. Science, 312, 1622–1627.
Buonomano, D. V., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in corti-

cal networks. Nature Reviews Neuroscience, 10, 113–125.
Buzsáki, G. (2006). Rhythms of the Brain. Oxford University Press.
Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.
Buzsáki, G., Logothetis, N., & Singer, W. (2013). Scaling brain size, keeping timing: Evolutionary preserva-

tion of brain rhythms. Neuron, 80(3), 751–764.
Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annual Review of Neuroscience, 

35, 203–225.
Castelo-Branco, M., Goebel, R., Neuenschwander, S., & Singer, W. (2000). Neural synchrony correlates 

with surface segregation rules. Nature, 405, 685–689.

http://creativecommons.org/licenses/by/4.0/


Oscillations in natural neuronal networks; an epiphenomenon or a fundamental computational mechanism?

Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H., & Moore, C. I. 
(2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 
459, 663–667.

Chauvière, L., & Singer, W. (2019). Neurofeedback training of gamma oscillations in monkey primary vis-
ual cortex. Cerebral Cortex, 29(11), 4785–4802.

Chen, M., Yan, Y., Gong, X., Gilbert, C. D., Liang, H., & Li, W. (2014). Incremental integration of global 
contours through interplay between visual cortical areas. Neuron, 82, 682–694.

Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., Newsome, 
W. T., Clark, A. M., Hosseini, P., Scott, B. B., Bradley, D. C., Smith, M. A., Kohn, A., Movshon, J. 
A., Armstrong, K. M., Moore, T., Chang, S. W., Snyder, L. H., Lisberger, S. G., … Shenoy, K. V. 
(2010). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neu-
roscience, 13(3), 369–378.

David, S. V. (2004). Natural stimulus statistics alter the receptive field structure of V1 neurons. Journal of 
Neuroscience, 24(31), 6991–7006.

Davis, Z. W., Muller, L., Martinez-Trujillo, J., Sejnowski, T., & Reynolds, J. H. (2020). Spontaneous travel-
ling cortical waves gate perception in behaving primates. Nature, 587, 432–436.

Doelling, K. B., & Poeppel, D. (2015). Cortical entrainment to music and its modulation by expertise. Pro-
ceedings of the National Academy of Sciences of the USA, 112(45), E6233–E6242.

Dubinin, I., & Effenberger, F. (2023). Fading memory as inductive bias in residual recurrent networks. 
arXiv, July 28, 2023,1–25. (https:// arxiv. org/ abs/ 2307. 14823)

Effenberger, F., Carvalho, P., Dubinin, I., & Singer, W. (2025). The functional role of oscillatory dynamics 
in neocortical circuits: A computational perspective. Proceedings of the National Academy of Sci-
ences of the USA, 122(4), 1–12.

Engel, A. K., König, P., Kreiter, A. K., Schillen, T. B., & Singer, W. (1992). Temporal coding in the visual 
cortex: New vistas on integration in the nervous system. Trends in Neurosciences, 15, 218–226.

Engel, A. K., König, P., & Singer, W. (1991a). Direct physiological evidence for scene segmentation by tem-
poral coding. Proceedings of the National Academy of Sciences of the USA, 88, 9136–9140.

Engel, A. K., König, P., Kreiter, A. K., & Singer, W. (1991b). Interhemispheric synchronization of oscilla-
tory neuronal responses in cat visual cortex. Science, 252, 1177–1179.

Felleman, D. J., & van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cor-
tex. Cerebral Cortex, 1, 1–47.

Fernando, C., & Sojakka, S. (2003). Pattern recognition in a bucket. Lecture Notes in Computer Science, 
2801, 588–597.

Ferster, D., & Lindström, S. (1983). An intracellular analysis of geniculo-cortical connectivity in area 17 of 
the cat. The Journal of Physiology, 342(1), 181–215.

Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron, 88, 220–235.
Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coher-

ence. Trends in Cognitive Sciences, 9(10), 474–480.
Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Anders-

son, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C. (2016). A multi-modal 
parcellation of human cerebral cortex. Nature, 536, 171–178.

Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit 
inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.

Gray, C. M., & McCormick, D. A. (1996). Chattering cells: Superficial pyramidal neurons contributing to 
the generation of synchronous oscillations in the visual cortex. Science, 274, 109–113.

Gray, C. M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat vis-
ual cortex. Proceedings of the National Academy of Sciences of the USA, 86, 1698–1702.

Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties of neurons in inferotemporal 
cortex of the macaque. Journal of Neurophysiology, 35, 96–111.

Haken, H. (1977). Synergetics: An Introduction. Springer.
Hebb, D. O. (1949). The Organization of Behavior. John Wiley & Sons.
Hirabayashi, T., Takeuchi, D., Tamura, K., & Miyashita, Y. (2013). Microcircuits for hierarchical elabora-

tion of object coding across primate temporal areas. Science, 341, 191–195.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abili-

ties. Proceedings of the National Academy of Sciences of the USA, 79, 2554–2558.
Hughes, J. R. (1995). The phenomenon of travelling waves: A review. Clinical Electroencephalography, 

26(1), 1–6.
Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a math-

ematical model of coupled cortical colums. Biological Cybernetics, 73(4), 357–366.

https://arxiv.org/abs/2307.14823


 Singer et al.

Kayser, C., Salazar, R. F., & König, P. (2003). Responses to natural scenes in cat V1. Journal of Neuro-
physiology, 90, 1910–1920.

Köhler, W. (1930). Gestalt Psychology. Bells and Sons.
König, P., & Schillen, T. B. (1991). Stimulus-dependent assembly formation of oscillatory responses: I Syn-

chronization. Neural Computation, 3, 155–166.
Kreiter, A. K., & Singer, W. (1996). Stimulus-dependent synchronization of neuronal responses in the visual 

cortex of the awake macaque monkey. The Journal of Neuroscience, 16(7), 2381–2396.
Lachaux, J.-P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain 

signals. Human Brain Mapping, 8(4), 194–208.
Lazar, A., Lewis, C., Fries, P., Singer, W., & Nikolic, D. (2021). Visual exposure enhances stimulus encod-

ing and persistence in primary cortex. Proceedings of the National Academy of Sciences of the USA, 
118(43), e2105276118, 1–11.

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm as a Taylor 
expansion of the local rounding errors. University.

Livingstone, M. S. (1996). Oscillatory firing and interneuronal correlations in squirrel monkey striate cor-
tex. Journal of Neurophysiology, 75(6), 2467–2485.

Llinas, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: Insights into cen-
tral nervous system function. Science, 242, 1654–1664.

Löwel, S., & Singer, W. (1992). Selection of intrinsic horizontal connections in the visual cortex by corre-
lated neuronal activity. Science, 255, 209–212.

Lowet, E., Roberts, M. J., Bonizzi, P., Karel, J., & De Weerd, P. (2016). Quantifying neural oscillatory syn-
chronization: A comparison between spectral coherence and phase-locking value approaches. PLOS 
ONE, 11(1), e0146443, 1–37.

Lowet, E., Roberts, M. J., Gips, B., De Weerd, P., & Peter, A. (2017). A quantitative theory of gamma syn-
chronization in macaque V1. elife, 6, e26642, 1–44. (elifesciences.org)

Lu, Z., Kim, J. Z., & Bassett, D. S. (2020). Supervised chaotic source separation by a tank of water. Chaos, 
30(021101), 1–8.

Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network train-
ing. Computer Science Review, 3(3), 127–149.

Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., & Miller, E. K. (2016). Gamma and 
beta bursts underlie working memory. Neuron, 90(1), 152–164.

Magee, J. C., & Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in 
hippocampal neurons. Science, 275, 209–213.

Maksymov, I. S., Huy Nguyen, B. Q., Pototsky, A., & Suslov, S. (2022). Acoustic, phononic, brillouin light 
scattering and faraday wave-based frequency combs: Physical foundations and applications. Sensors, 
22(3921), 1–45.

Markov, N. T., Ercsey-Ravasz, M., Van Essen, D. C., Knoblauch, K., Toroczkai, Z., & Kennedy, H. (2013). 
Cortical high-density counterstream architectures. Science, 342(6158), 1238406, 1–14.

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coinci-
dence of postsynaptic APs and EPSPs. Science, 275, 213–215.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bul-
letin of Mathematical Biophysics, 5(4), 115–133.

Milner, P. M. (1992a). The functional nature of neuronal oscillations. Trends in Neurosciences, 15, 387.
Milner, P. M. (1992b). Reply. Trends in Neurosciences, 15, 387–388.
Moy, W., Ahmed, I., Chiu, P.-W., Moy, J., Sapatnekar, S. S., & Kim, C. H. (2022). A 1,968-node cou-

pled ring oscillator circuit for combinatorial optimization problem solving. Nature Electronics, 5(5), 
310–317.

Muller, L., Chavane, F., Reynolds, J., & Sejnowski, T. J. (2018). Cortical travelling waves: Mechanisms and 
computational principles. Nature Reviews Neuroscience, 19, 255–268.

Murray, J. D., Bernacchia, A., Freedman, D. J., Romo, R., Wallis, J. D., Cai, X., Padoa-Schioppa, C., Pas-
ternak, T., Seo, H., Lee, D., & Wang, X.-J. (2014). A hierarchy of intrinsic timescales across primate 
cortex. Nature Neuroscience, 17(12), 1661–1663.

Nicolis, G., & Prigogine, I. (1977). Self-Organization in Nonequilibrium Systems. Wiley-Interscience.
Nikolic, D., Häusler, S., Singer, W., & Maass, W. (2009). Distributed fading memory for stimulus properties 

in the primary visual cortex. PLOS Biology, 7(12), e1000260, 1–19.
Offray de la Mettrie, J. (1748). L’ Homme Machine. De l’Imp. d’Elie Luzac, fils. Leyde.
Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a 

sparse code for natural images. Nature, 381, 607–609.
Onorato, I., Neuenschwander, S., Hoy, J., Lima, B., Rocha, K.-S., Broggini, A. C., Uran, C., Spyropoulos, 

G., Klon-Lipok, J., Womelsdorf, T., Fries, P., Niell, C., Singer, W., & Vinck, M. (2020). A distinct 



Oscillations in natural neuronal networks; an epiphenomenon or a fundamental computational mechanism?

class of bursting neurons with strong gamma synchronization and stimulus selectivity in monkey V1. 
Neuron, 105(1), 180–197.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. Pro-
ceedings of the 30th International Conference on Machine Learning, PMLR, 28(3), 1310–1318.

Peron, S., Pancholi, R., Voelcker, B., Wittenbach, J. D., Olafsdottir, H. F., Freeman, J., & Svoboda, K. 
(2020). Recurrent interactions in local cortical circuits. Nature, 579, 256–259.

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by sin-
gle neurons in the human brain. Nature, 435, 1102–1107.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretationof 
some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.

Ray, S., & Maunsell, J. H. R. (2015). Do gamma oscillations play a role in cerebral cortex? Trends in Cogni-
tive Sciences, 19(2), 78–85.

Ray, S., & Maunsell, J. H. R. (2010). Differences in gamma frequencies across visual cortex restrict their 
possible use in computation. Neuron, 67, 885–896.

Rosenblatt, F. (1958). The perceptron. A probabilistic model for information storage and organization in the 
brain. Psychological Reviews, 65, 386–408.

Salinas, E., & Sejnowski, T. J. (2001). Correlated neuronal activity and the flow of neural information. 
Nature Reviews Neuroscience, 2(8), 539–550.

Schillen, T. B., & König, P. (1994). Binding by temporal structure in multiple feature domains of an oscilla-
tory neuronal network. Biological Cybernetics, 70, 397–405.

Schillen, T. B., & König, P. (1991). Stimulus-dependent assembly formation of oscillatory responses: II. 
Desynchronization. Neural Computation, 3, 167–178.

Singer, W. (2021). Recurrent dynamics in the cerebral cortex: Integration of sensory evidence with stored 
knowledge. Proceedings of the National Academy of Sciences of the USA, 118(33), e2101043118, 
1–12.

Singer, W. (2019). A naturalistic approach to the hard problem of consciousness. Frontiers in Systems Neu-
roscience, 13(58), 1–9.

Singer, W. (2018). Neuronal oscillations: Unavoidable and useful? European Journal of Neuroscience, 
48(7), 2389–2398.

Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations? Neuron, 24, 49–65.
Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and 

learning. Annual Review of Physiology, 55, 349–374.
Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. 

Annual Review of Physiology, 18, 555–586.
Spyropoulos, G., Saponati, M., Dowdall, J. R., Schölvinck, M. L., Bosman, C. A., Lima, B., Peter, A., Ono-

rato, I., Klon-Lipok, J., Roese, R., Neuenschwander, S., Fries, P., & Vinck, M. (2022). Spontaneous 
variability in gamma dynamics described by a damped harmonic oscillator driven by noise. Nature 
Communications, 13(2019), 1–18.

Stryker, M. P. (1989). Is grandmother an oscillation? Nature, 338, 297–298.
Swadlow, H. A. (1985). Physiological properties of individual cerebral axons studied in vivo for as long as 

one year. Journal of Neurophysiology, 54(5), 1346–1362.
Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H., & Livingstone, M. S. (2006). A cortical region consisting 

entirely of face-selective cells. Science, 311, 670–674.
Van Rullen, R., Guyonneau, R., & Thorpe, S. J. (2005). Spike times make sense. Trends in Neurosciences, 

28(1), 1–4.
von der Malsburg, C., & Buhmann, J. (1992). Sensory segmentation with coupled neural oscillators. Bio-

logical Cybernetics, 67, 233–242.
von der Malsburg, C., & Schneider, W. (1986). A neural cocktail-party processor. Biological Cybernetics, 

54, 29–40.
Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P. S. (2006). Heteroge-

neity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9(4), 534–542.
Waxman, S. G. (1980). Determinants of conduction velocity in myelinated nerve fibers. Muscle & Nerve, 

3(2), 141–150.
Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis. Drenick, R. F., & Kosin, F., 

Editors. System Modeling an Optimization. Springer-Verlag, New York.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Oscillations in Natural Neuronal Networks; An Epiphenomenon or a Fundamental Computational Mechanism?
	Abstract
	Changing Views on Brain Dynamics
	Metaphors
	Artificial Systems
	Natural Systems
	The Internal Model of the World

	Dynamic Encoding of Relations in Recurrent Networks
	The Relation Between Gestalt Rules and Response Synchronization
	Synchrony and Oscillations
	A Comprehensive Simulation Study
	Documentation of HORNs Basic Structural and Functional Features
	Oscillating Network Nodes
	Homogeneous Networks
	Heterogeneous Networks
	Delays
	Hebbian Learning
	Spontaneous and Evoked Activity

	Concluding Remarks
	References


