
ll
Commentary
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This commentary celebrates the 50th anniversary of the seminal paper by John F. Nye and Michael V. Berry
published in 1974 that described topological wave singularities. Originally termed ‘‘wave dislocations,’’ they
are now known as ‘‘wave vortices’’ and occur in diverse systems, such as tides, quantum matter waves, and
most notably, light.
Wave vortices as nodal topological
singularities
A striking phenomenon any student of

wave physics learns is that when multiple

waves are added and destructive interfer-

ence occurs, it causes the wave ampli-

tude to cancel out. In their 1974 paper

‘‘Dislocations in wave trains,’’1 John Nye

and Michael Berry described wave inter-

ference very generally where waves are

reflected by random rough surfaces.

They found that in typical wave-interfer-

ence patterns on the wavelength scale,

the amplitude vanishes at points in two di-

mensions and lines in three. Since these

generalized nodes—threads of dark-

ness—disrupt the regular phase pattern

of a regular, coherent wave train, Nye

and Berry dubbed them ‘‘wave disloca-

tions’’ (see Figure 1A). Nowadays, these

structures are more frequently called

‘‘wave vortices’’ (or, depending on the

wave’s nature, optical vortices, quantum

vortices, and so on) on account of the

flow of energy around them. In addition

to having zero amplitude, these disloca-

tions are topological phase singularities:

all 2p phases occur nearby, winding

around a positive or negative number of

turns. The integer number of phase turns

around the dislocation, [, is often called

a topological charge and is preserved un-

der small perturbations to the system.

Nye’s background made him ideally

suited to make this discovery. Seminal

experiments with two-dimensional (2D)

crystals of ‘‘bubble rafts’’ were performed

in the 1940s by W.L. Bragg and Nye, who
All rights are re
was a graduate student. This work, later

published in volume 2 of the Feynman

Lectures on Physics, led to the general

acceptance of crystal dislocations. Nye’s

interest in crystals led him to glaciology

and thus to a consulting role for the British

Antarctic Survey. The randomly reflected

ultrasonic waves, which Nye used to de-

monstrate wave dislocations, had been

designed to mimic the random radio

waves being used to map the land under

the Antarctic ice sheet. Nye had been at

the University of Bristol since the 1950s,

in an atmosphere highly conducive to

developing concepts related to topology.

In particular, Sir F. Charles Frank, who

contributed significant developments

to condensed matter theory, proposed

the idea of ‘‘disclinations’’—topological

defect lines—in liquid crystals in 1956. In

Bristol in 1959, Yakir Aharonov and David

Bohm discovered the Aharonov-Bohm ef-

fect4: the topological effect by which a

magnetic solenoid line enclosed within a

quantum particle’s loop trajectory causes

an observable shift to the quantum phase.

Michael Berry joined the University of

Bristol in the mid-1960s, and in 1984, he

discovered the closely related geometric

(or Berry) phase appearing in cyclic quan-

tum evolutions.5 By the late 1960s, hewas

working on caustics, and by the late

1970s, Nye and Berry were collaborating

on the description of wave caustics using

catastrophe theory. They also worked

together on dislocations in wave fields,

leading to their classification and simple

mathematical models.
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served, including those for text and data mining
Nye andBerry acknowledgedwave dis-

locations in previous studies of various

physical waves. Notably, examples of

phase singularities are known from the

19th century as ‘‘amphidromic points’’ in

ocean tidal waves (discovered by William

Whewell in 1833) (Figure 1B). The tidal

amplitude vanishes at these points, whe-

reas the high-tide peak circulates around

the amphidromic peak with the tidal-

wave period. Furthermore, wave disloca-

tions play a crucial role in the fundame-

ntal quantum-mechanical construction of

Paul Dirac’s hypothetical magnetic mono-

pole (1931). Namely, the electron wave

function around the monopole inevitably

has a dislocation line, which ends with

the monopole. In the 1940s, several inde-

pendent authors, including Arnold Som-

merfeld, Hans Wolter, Werner Braunbek,

and Trevor Pearcey, described energy-

flow vortices in electromagnetic and opti-

cal waves6 (some, at least, influenced by

studies on radio wave scattering during

World War II).

Wave topology branches out
Nye and Berry’s paper was adopted, and

over the next two decades, wave disloca-

tions were well studied as generic fea-

tures of disrupted and chaotic wave pat-

terns, including optical speckle patterns

and chaotic quantum wave functions.

Moreover, inspired in part by analogous

structures in liquid crystals, Nye and

co-workers extended the idea of topolog-

ical singularities to vector waves. They

studied light with position-dependent
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, AI training, and similar technologies.
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Figure 1. Examples of ‘‘wave dislocations’’ (phase singularities or wave vortices) and other

topological structures in various kinds of wavefields
(A) Diffraction of a plane wave incident from left to right on a half-plane obstacle (described by Braunbek
and Laukien in 1952, reprinted in several subsequent textbooks). Left panel: the wave amplitude |j(x,y)|
(grayscale) and the wave current (or energy flux) j = Im(j*Vj) (cyan). Right panel: the wave phase Arg
[j(x,y)] coded via hue colors. Phase singularities (black dots, with their topological charges [) appear on
subwavelength scale before the obstacle, and the wave current swirls around these.
(B) Phase singularities, known as amphidromic points, and phase vortices around these on the map of M2
ocean tides. The tidal amplitude and phase are coded by brightness and color, respectively (HAMTIDE
model data, E.E. Taguchi, D. Stammer, and W. Zahel [2014]. Geophys. Res. Oceans 119, 4573–4592; this
plot is courtesy of Kateryna Domina).
(C and D) Examples of more sophisticated 3D topological wave structures: (C) a trefoil knot of the phase-
singularity line (reproduced from M. Dennis, R. King, B. Jack, et al. [2010]. Isolated optical vortex knots.
Nature Phys. 6, 118–121. https://doi.org/10.1038/nphys1504) and (D) Möbius band formed by the ori-
entations (blue vectors) of polarization ellipses (phase-colored ellipses) surrounding the C-point with a
purely circular polarization (black dot) (reproduced from K.Y. Bliokh, M.A. Alonso, D. Sugic, M. Perrin, F.
Nori, E. Brasselet [2021]. Polarization singularities and Möbius strips in sound and water-surface waves.
Physics of Fluids 33, 077122. https://doi.org/10.1063/5.0056333).
(E) Quantum free-electron vortices generated in a transmission electron microscope (TEM) using a
hologramwith fork-like dislocation (gray). The vortices with topological charges [ = ±9 are produced in the
first diffraction orders (Bliokh et al.2).
(F) Holographic 3D acoustic-vortex-based tweezers manipulating polystyrene particles in the air (Marzo
et al.3).
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polarization patterns, identifying C points

and C lines where polarization is circular,

and the ellipse’s azimuth is singular.7

Phase and polarization singularities were

later emphasized as a ‘‘topological skel-

eton’’ for a complex texture of interfering

waves.

Interest in optical vortices became

turbocharged after 1992 when the Leiden

group of Han Woerdman, working with

Les Allen, discovered structured laser-

beam eigenmodes of the orbital angular

momentum (OAM) operator (with respect

to the beam axis).8 At a similar time, Marat

Soskin’s group in Kyiv showed9 that a
2 Newton 1, 100005, March 3, 2025
dislocated hologram pattern can plant

an optical vortex in a laser beam. The

OAM eigenmodes, now known as ‘‘vortex

beams,’’ contain circularly symmetric ph-

ase singularities on the beam axis (where

helicoidal wavefronts meet—analogous

to crystalline screw dislocations), and

the topological charge [ becomes the

OAM quantum number. This remarkable

interconnection of the topological and

dynamical properties resulted in rapid

and fruitful development of the vortex

beams research and applications.

In the following decades, the original

ideas of wave dislocations and vortex be-
ams evolved into extended areas of rese-

arch with diverse implications in different

fields. On the one hand, the concept of

universal topological structures in com-

plex wavefields was extended to more

complex objects, such as knotted singu-

larities (Figure 1C), polarization Möbius

bands10 (Figure 1D), and, most recently,

skyrmionic textures—i.e., linear-vector-

wave configurations analogous to 2D

and three-dimensional (3D) winding tex-

tures in high-energy and condensed-mat-

ter systems. In contrast to the localized

point-like or line-like singularities, these

textures are extended, continuous ob-

jects occupying a certain area of space

or plane. All these findings serve the gen-

eral idea to characterize complex wave

fields by their topological features. In-

deed, the usual wave characteristics,

such as the local amplitude, phase,

and polarization, can considerably vary

under inevitable small perturbations in

complex systems, while the topological

structures and their topological num-

bers are robust with respect to such

perturbations.

Over a similar period since the mid-

1970s, a somewhat parallel topological

approach reshaped condensed-matter

physics. With a focus on topological stru-

ctures in momentum space rather than

real space, these studies began with the

discovery of the quantum Hall effect,

leading to the modern classification of a

rich variety of topological insulators and

superconductors. This difference be-

tween ‘‘optical’’ and ‘‘condensed matter’’

approaches is natural; in optical inter-

ference, real-space complex structured

fields are directly measurable, whereas

in complex materials, the internal wave

fields are inaccessible and the measur-

able Fourier spectra become the main

objects of interest. Notably, topological

properties of condensed-matter systems

are essentially underpinned by Berry

phases in momentum space, and these

ideas involving topological phases and

quantized vortices were the basis of the

2016 Nobel Prize in Physics, awarded to

David Thouless, Michael Kosterlitz, and

Duncan Haldane.

Vortex beams at work
Optical vortex beams have found numer-

ous applications and have been expor-

ted to other areas of wave physics.
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Optical vortices have contributed to

almost every area of classical optics,

including nonlinear optics with a wide

class of vortex solitons,11 laser optics

with vortex microlasers, and even astron-

omy with vortex coronography.12 Com-

binedwith specific fluorescent molecules,

vortex beams are a key component of su-

per-resolved stimulated emission deple-

tion (STED) microscopy, earning Stefan

Hell a share of the 2014 Nobel Prize in

Chemistry.

The use of vortex beams revolutionized

optical13 (and later acoustic3) tweezers

and the manipulation of small particles.

This field began with Arthur Ashkin’s

works using usual Gaussian-like laser

beams (leading to his share of the 2018

Nobel Prize in Physics). The use of vortex

beams allowed effective rotational manip-

ulation of particles and entrapment of par-

ticles near the zero-amplitude (dark-field)

zones, reducing thermal effects. In the

past two decades, the use of vortex and

other phase-structured optical and aco-

ustic beams resulted in the development

of holographic tweezers (Figure 1F).

Such tweezers allow simultaneous 3D

manipulation of a large number of parti-

cles, from single atoms to biological cells

and microorganisms, with futuristic ap-

plications, such as volumetric displays

based on the 3D arrays of trapped par-

ticles.

Furthermore, optical vortex beams

have found remarkable implications in

quantum optics and information trans-

fer. In 2001, Anton Zeilinger’s group in

Vienna14 successfully measured quantum

entanglement of the OAM (vortex) states

of photons, extending the optical Hilbert

space accessible to fundamental quan-

tum experiments from two (via polariza-

tion) to an arbitrary number of dimensions

(the mode’s topological vortex strength).

Zeilinger’s work on optics and quantum

information was honored in his share

of the 2022 Nobel Prize in Physics.

The same idea of the OAM mode multi-

plexing was applied to increase the infor-

mation transfer via electromagnetic and
optical signals in free space and optical

fibers.15

Importantly, vortex beams and other

topological wave structures have tran-

scended the boundaries of optics and

provided a useful toolbox across all areas

of wave physics, both classical and quan-

tum. OAM vortex beams, as well as a va-

riety of topological wave structures, have

been generated in acoustics, plasmonics,

and even water waves. In the quantum

domain, vortex beams have been pro-

duced and found applications in electron

microscopy2 (Figures 1E), as well as in

neutron and atomic waves.

Dark threads have a bright future
Optical vortices and topologically struc-

tured light have been crucial to our

contemporary understanding and ability

to manipulate light and other waves. We

have briefly reviewed this incredible trans-

formation over the past 50 years, and how

optical and acoustic vortices provide the

means to manipulate bio- and nanopar-

ticles, study and control quantum inform-

ation, and improve optical imaging from

microscopes to telescopes. Originally

identified with defects in crystals, optical

and acoustic vortices now provide a basis

for topological analogies in a gamut of

wave systems of different nature. As opti-

cal technologies move into the nanoscale

regime, the fine structure of light fields be-

comes increasingly significant, suggest-

ing the dark threads in light beams have

a bright future.
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