Deep Neural Networks for Form-Finding of Tensegrity Structures

This paper proposes a new form-finding method based on state-of-the-art deep learning techniques. One of the statical paradigms, a force density method, is substituted for trained deep neural networks to obtain necessary information of tensegrities. It is based on the differential evolution algorithm, where the eigenvalue decomposition process of the force density matrix and the process of the equilibrium matrix are not needed to find the feasible sets of nodal coordinates.

#Biology #Architecture #Complexity #ML #Generative