tags
about

Oscillatory Neural Networks (ONNs) Key Terms

In oscillatory neural networks (ONNs), several key terms and parameters define the dynamics and behavior of the system. Here’s a comprehensive list of the most important ones, including ω (omega) and their roles:


1. Core Parameters & Variables

ω (Omega) – Angular Frequency

  • Defines the natural oscillation rate of a neuron or oscillator.
  • Units: radians per second (rad/s).
  • Higher ω → faster oscillations.

θ (Theta) – Phase

  • Represents the current position in the oscillation cycle (0 to \(2\pi\)).
  • Dynamics: \( \frac{dθ_i}{dt} = \omega_i + \text{coupling terms} \).

A (Amplitude)

  • The magnitude of oscillation (e.g., spike height in neural models).
  • Sometimes dynamic (e.g., in amplitude death phenomena).

φ (Phi) – Phase Difference

  • Relative phase between two oscillators (\( \phi = \theta_j - \theta_i \)).
  • Critical for synchronization.

2. Coupling & Interaction Terms

K (Coupling Strength)

  • Determines how strongly oscillators influence each other.
  • High \( K \) → faster synchronization.

J (Connection Weights)

  • Synaptic-like weights between oscillators (e.g., \( J_{ij} \) for neuron \( i \leftarrow j \)).

g(φ) – Phase Response Curve (PRC)

  • Describes how an oscillator’s phase shifts due to input.

3. Synchronization & Collective Dynamics

Sync Order Parameter (R)

  • Measures global synchronization:
    \[
    R e^{i\psi} = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}
    \]
  • \( R \approx 1 \): Perfect sync; \( R \approx 0 \): No sync.

Critical Coupling (Kₐ)

  • Threshold coupling strength for synchronization (e.g., in Kuramoto model).

Cluster States

  • Subgroups of oscillators sync separately (e.g., phase-locked clusters).

4. Noise & Disturbances

D (Noise Intensity)

  • Adds stochasticity (e.g., \( \frac{dθ*i}{dt} = \omega_i + \xi_i(t) \), where \( \langle \xi_i(t) \xi_j(t’) \rangle = 2D \delta{ij} \delta(t-t’) \)).

Hysteresis

  • Memory-dependent effects under parameter changes.

5. Network Structure Terms

Topology

  • Defines connectivity (e.g., all-to-all, small-world, scale-free).

Delay (τ)

  • Time lag in interactions (e.g., \( \sin(\theta_j(t-\tau) - \theta_i(t)) \)).

6. Special Models & Extensions

  • Kuramoto Model: \( \frac{dθ_i}{dt} = \omega_i + \frac{K}{N} \sum \sin(\theta_j - \theta_i) \).
  • Stuart-Landau Oscillators: Complex amplitudes with \( \dot{z} = (\lambda + i\omega)z - |z|^2z \).
  • Hopf Oscillators: Used in central pattern generators (CPGs).

7. Biological Analogies

  • Gamma/Beta Bands: Frequency ranges (e.g., 30-100 Hz gamma oscillations in cognition).
  • Spike-Phase Coding: Info encoded in spike timing relative to oscillation phase.

Summary Table

Term Symbol Role
Angular Frequency ω Sets oscillation rate
Phase θ Position in cycle
Coupling Strength K Sync control
Order Parameter R Sync measure
Noise D Stochastic effects
Connection Weight J_{ij} Network influence
Phase Response Curve g(φ) Phase shift dynamics

#OSC